LBL logo

Buildings.UsersGuide.ReleaseNotes Buildings.UsersGuide.ReleaseNotes

This section summarizes the changes that have been performed on the Buildings library

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).

Package Content

NameDescription
Buildings.UsersGuide.ReleaseNotes.Version_1_3_build1 Version_1_3_build1 Version 1.3 build 1
Buildings.UsersGuide.ReleaseNotes.Version_1_2_build1 Version_1_2_build1 Version 1.2 build 1
Buildings.UsersGuide.ReleaseNotes.Version_1_1_build1 Version_1_1_build1 Version 1.1 build 1
Buildings.UsersGuide.ReleaseNotes.Version_1_0_build2 Version_1_0_build2 Version 1.0 build 2
Buildings.UsersGuide.ReleaseNotes.Version_1_0_build1 Version_1_0_build1 Version 1.0 build 1
Buildings.UsersGuide.ReleaseNotes.Version_0_12_0 Version_0_12_0 Version 0.12.0
Buildings.UsersGuide.ReleaseNotes.Version_0_11_0 Version_0_11_0 Version 0.11.0
Buildings.UsersGuide.ReleaseNotes.Version_0_10_0 Version_0_10_0 Version 0.10.0
Buildings.UsersGuide.ReleaseNotes.Version_0_9_1 Version_0_9_1 Version 0.9.1
Buildings.UsersGuide.ReleaseNotes.Version_0_9_0 Version_0_9_0 Version 0.9.0
Buildings.UsersGuide.ReleaseNotes.Version_0_8_0 Version_0_8_0 Version 0.8.0
Buildings.UsersGuide.ReleaseNotes.Version_0_7_0 Version_0_7_0 Version 0.7.0
Buildings.UsersGuide.ReleaseNotes.Version_0_6_0 Version_0_6_0 Version 0.6.0
Buildings.UsersGuide.ReleaseNotes.Version_0_5_0 Version_0_5_0 Version 0.5.0
Buildings.UsersGuide.ReleaseNotes.Version_0_4_0 Version_0_4_0 Version 0.4.0
Buildings.UsersGuide.ReleaseNotes.Version_0_3_0 Version_0_3_0 Version 0.3.0
Buildings.UsersGuide.ReleaseNotes.Version_0_2_0 Version_0_2_0 Version 0.2.0
Buildings.UsersGuide.ReleaseNotes.Version_0_1_0 Version_0_1_0 Version 0.1.0


Buildings.UsersGuide.ReleaseNotes.Version_1_3_build1 Buildings.UsersGuide.ReleaseNotes.Version_1_3_build1

In version 1.3 build 1, models for direct evaporative cooling coils with multiple stages or with a variable speed compressor have been added. This version also contains improvements to the fan and pump models to better treat zero mass flow rate. Various other improvements have been made to improve the numerics and to use consistent variable names. A detailed list of changes is shown below.

The following new libraries have been added:

Buildings.Fluid.HeatExchangers.DXCoils Library with direct evaporative cooling coils.

The following new components have been added to existing libraries:

Buildings.Examples
Buildings.Examples.ChillerPlant.DataCenterContinuousTimeControl Added chilled water plant model with continuous time control that replaces the discrete time control in Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeControl.
Buildings.Utilities
Buildings.Utilities.Psychrometrics.Functions.X_pSatpphi Function that computes moisture concentration based on saturation pressure, total pressure and relative humidity.
Buildings.Utilities.Psychrometrics.TWetBul_TDryBulPhi Block that computes the wet bulb temperature for given dry bulb temperature, relative humidity and atmospheric pressure.
Buildings.Utilities.Psychrometrics.WetBul_pTX Block that computes the temperature and mass fraction at the wet bulb state for given dry bulb temperature, species concentration and atmospheric pressure.

The following existing components have been improved in a backward compatible way:

Buildings.BoundaryConditions
Buildings.BoundaryConditions.WeatherData.ReaderTMY3 Added computation of the wet bulb temperature. Computing the wet bulb temperature introduces a nonlinear equation. As we have not observed an increase in computing time because of computing the wet bulb temperature, it is computed by default. By setting the parameter computeWetBulbTemperature=false, the computation of the wet bulb temperature can be removed.
Buildings.Controls
Buildings.Controls.SetPoints.OccupancySchedule Added pre operator and relaxed tolerance in assert statement.
Buildings.Fluid
Buildings.Fluid.Movers.FlowMachine_dp
Buildings.Fluid.Movers.FlowMachine_m_flow
Buildings.Fluid.Movers.FlowMachine_Nrpm
Buildings.Fluid.Movers.FlowMachine_y
Reformulated implementation of efficiency model to avoid a division by zero at zero mass flow rate for models in which a user specifies a power instead of an efficiency performance curve.
Buildings.Utilities
Buildings.Utilities.Psychrometrics.TWetBul_TDryBulXi Added option to approximate the wet bulb temperature using an explicit equation. Reformulated the original model to change the dimension of the nonlinear system of equations from two to one.

The following existing components have been improved in a non-backward compatible way:

Buildings.BoundaryConditions
Buildings.BoundaryConditions.WeatherData.ReaderTMY3
Buildings.BoundaryConditions.Types
Improved the optional inputs for the radiation data global horizontal, diffuse horizontal and direct normal radiation. If a user specifies two of them, the third will be automatically calculated.
Buildings.BoundaryConditions.SkyTemperature.BlackBody Renamed radHor to radHorIR to indicate that the radiation is in the infrared spectrum.
Buildings.Fluid
Buildings.Airflow.Multizone.BaseClasses.DoorDiscretized
Buildings.Airflow.Multizone.DoorDiscretizedOpen
Buildings.Airflow.Multizone.DoorDiscretizedOperable
Buildings.Airflow.Multizone.Orifice
Buildings.Airflow.Multizone.ZonalFlow_ACS
Buildings.Fluid.Actuators.BaseClasses.PartialDamperExponential
Buildings.Fluid.Actuators.Dampers.MixingBox
Buildings.Fluid.Actuators.Dampers.VAVBoxExponential
Buildings.Fluid.BaseClasses.PartialResistance
Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger
Buildings.Fluid.Movers.BaseClasses.PowerInterface
Buildings.Fluid.Storage.BaseClasses.Buoyancy
Buildings.Fluid.HeatExchangers.BaseClasses.MassExchange
Renamed protected parameters for consistency with the naming conventions. In previous releases, fluid properties had the suffix 0 or _nominal instead of _default when they where computed based on the medium default properties.
Buildings.Fluid.Sensors.SensibleEnthalpyFlowRate
Buildings.Fluid.Sensors.LatentEnthalpyFlowRate
Moved computation of parameter i_w to new base class Buildings.Fluid.BaseClasses.IndexWater The value of this parameter is now assigned dynamically and does not require to be specified by the user.
Buildings.Fluid.Storage.BaseClasses.ThirdOrderStratifier Removed unused protected parameters sta0 and cp0.
Buildings.Examples
Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeControl
Buildings.Examples.ChillerPlant.BaseClasses.Controls.TrimAndRespond
Buildings.Examples.ChillerPlant.BaseClasses.Controls.ZeroOrderHold
Re-implemented the controls for setpoint reset. Revised the model TrimAndRespond and deleted the model ZeroOrderHold. Improved the documentation.

The following critical errors have been fixed (i.e., errors that can lead to wrong simulation results):

Buildings.Examples
Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeControl Fixed error in wet bulb temperature. The previous version used a model to compute the wet bulb temperature that takes as an input the relative humidity, but required mass fraction as an input.

The following uncritical errors have been fixed (i.e., errors that do not lead to wrong simulation results, e.g., units are wrong or errors in documentation):

Buildings.BoundaryConditions
Buildings.BoundaryConditions.WeatherData.ReaderTMY3
Buildings.BoundaryConditions.SkyTemperature.BlackBody
Renamed radHor to radHorIR.
Buildings.Fluid
Buildings.Fluid.BaseClasses.FlowModels.Examples.InverseFlowFunction Fixed error in the documentation.
Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger Fixed broken link in the documentation.
Buildings.Fluid.Movers.BaseClasses.Characteristics.powerParameters Fixed wrong displayUnit and max attribute for power.
Buildings.Fluid.MixingVolumes In documentation, removed reference to the parameter use_HeatTransfer which no longer exists.
Buildings.HeatTransfer
Buildings.HeatTransfer.Windows.Functions.glassPropertyUncoated Improved the documentation for implementation and added comments for model limitations.

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_1_2_build1 Buildings.UsersGuide.ReleaseNotes.Version_1_2_build1

In version 1.2 build 1, models for radiant slabs and window overhangs and sidefins have been added. This version also contains various improvements to existing models. A detailed list of changes is shown below.

The following new libraries have been added:

Buildings.Fluid.HeatExchangers.RadiantSlabs Package with models for radiant slabs with pipes or a capillary heat exchanger embedded in the construction.
Buildings.Fluid.Data.Pipes Package with records for pipes.

The following new components have been added to existing libraries:

Buildings.HeatTransfer
Buildings.HeatTransfer.Windows.FixedShade
Buildings.HeatTransfer.Windows.Overhang
Buildings.HeatTransfer.Windows.SideFins
For windows with either an overhang or side fins, these blocks output the fraction of the area that is sun exposed.
Buildings.Rooms
Buildings.Rooms.Examples.BESTEST Added BESTEST validation models for case 610, 620, 630, 640, 650FF, 650, 920, 940, 950FF, 950, and 960.

The following existing components have been improved in a backward compatible way:

Buildings.BoundaryConditions
Buildings.BoundaryConditions.WeatherData.ReaderTMY3 Removed assignment of HGloHor_in in its declaration, because this gives an overdetermined system if the input connector is used.
Added new sub-bus that contains the solar position. This allows reusing the solar position in various other models.
Buildings.BoundaryConditions.SolarIrradiation.DiffuseIsotropic
Buildings.BoundaryConditions.SolarIrradiation.DiffusePerez
Buildings.BoundaryConditions.SolarIrradiation.BaseClasses.DiffuseIsotropic
Buildings.BoundaryConditions.SolarIrradiation.BaseClasses.DiffusePerez
Added optional output of diffuse radiation from the sky and ground. This allows reusing the diffuse radiation in solar thermal collector.
Buildings.BoundaryConditions.SolarGeometry.BaseClasses.SolarAzimuth Changed implementation to avoid an event at solar noon.
Buildings.HeatTransfer
Buildings.HeatTransfer.Data.BoreholeFillings Renamed class to BoreholeFillings to be consistent with data records being plural.
Buildings.Media
Buildings.Media.GasesPTDecoupled.MoistAir
Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated
Buildings.Media.PerfectGases.MoistAir
Buildings.Media.PerfectGases.MoistAirUnsaturated
Buildings.Media.GasesConstantDensity.MoistAir
Buildings.Media.GasesConstantDensity.MoistAirUnsaturated
Added redeclaration of ThermodynamicState to avoid a warning during model check and translation.
Buildings.Rooms
Buildings.Rooms.MixedAir Added a check that ensures that the number of surfaces are equal to the length of the parameter that contains the surface area, and added a check to ensure that no surface area is equal to zero. These checks help detecting erroneous declarations of the room model. The changes were done in Buildings.Rooms.MixedAir.PartialSurfaceInterface.

The following existing components have been improved in a non-backward compatible way:

Buildings.Rooms
Buildings.Rooms.MixedAir Added optional modeling of window overhangs and side fins. The modeling of window overhangs and side fins required the introduction of the new parameters hWin for the window height and wWin for the window width, in addition to the parameters ove and sidFin which are used to declare the geometry of overhangs and side fins. The parameters hWin and wWin replace the previously used parameter AWin for the window area. Users need to manually replace AWin with hWin and wWin when updating models from a previous version of the library.
See the information section in Buildings.Rooms.MixedAir for how to use these models.

The following critical errors have been fixed (i.e., errors that can lead to wrong simulation results):

Buildings.Controls
Buildings.Controls.SetPoints.OccupancySchedule Fixed a bug that caused an error in the schedule if the simulation start time was negative or equal to the first entry in the schedule.
Buildings.Fluid
Buildings.Fluid.Storage.BaseClass.ThirdOrderStratifier Revised the implementation to reduce the temperature overshoot.
Buildings.HeatTransfer
Buildings.HeatTransfer.Windows.BaseClasses.GlassLayer Fixed the bug in the temperature linearization and in the heat flow through the glass layer if the transmissivity of glass in the infrared regime is non-zero.
Buildings.HeatTransfer.Windows.BaseClasses.CenterOfGlass Fixed a bug in the parameter assignment of the instance glass. Previously, the infrared emissivity of surface a was assigned to the surface b.
Buildings.Utilities
Buildings.Utilities.IO.BCVTB Added a call to Buildings.Utilities.IO.BCVTB.BaseClasses.exchangeReals in the initial algorithm section. This is needed to propagate the initial condition to the server. It also leads to one more data exchange, which is correct and avoids the warning message in Ptolemy that says that the simulation reached its stop time one time step prior to the final time.

The following uncritical errors have been fixed (i.e., errors that do not lead to wrong simulation results, e.g., units are wrong or errors in documentation):

Buildings.BoundaryConditions
Buildings.BoundaryConditions.WeatherData.ReaderTMY3 Corrected the documentation of the unit requirement for input files, parameters and connectors.
Buildings.Fluid
Buildings.Fluid.Interfaces.PartialFourPortInterface
Buildings.Fluid.Interfaces.PartialTwoPortInterface
Replaced the erroneous function call Medium.density with Medium1.density and Medium2.density in PartialFourPortInterface. Changed condition to remove sta_a1 and sta_a2 in PartialFourPortInterface, and sta_a in PartialTwoPortInterface, to also compute the state at the inlet port if show_V_flow=true.
The previous implementation resulted in a translation error if show_V_flow=true, but worked correctly otherwise because the erroneous function call is removed if show_V_flow=false.
Buildings.Fluid.Chillers.Examples.BaseClasses.PartialElectric Corrected the nominal mass flow rate used in the mass flow source.

The following trac tickets have been fixed:

Heat transfer in glass layer
#56 Fixed bug in heat flow through the glass layer if the infrared transmissivity is non-zero.
#57 Fixed bug in temperature linearization of window glass.
Overshooting in enhanced stratified tank
#15 Revised the implementation to reduce the temperature over-shoot.

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_1_1_build1 Buildings.UsersGuide.ReleaseNotes.Version_1_1_build1

Version 1.1 build 1 contains improvements to models that address numerical problems. In particular, flow machines and actuators now have an optional filter that converts step changes in the input signal to a smooth change in speed or actuator position. Also, ( Buildings.Examples.Tutorial) has been added to provide step-by-step instruction for how to build system models.

The following new libraries have been added:

Buildings.Examples.Tutorial Tutorial with step by step instructions for how to build system models.

The following new components have been added to existing libraries:

Buildings.Fluid
Buildings.Fluid.FixedResistances.Pipe Added a model for a pipe with transport delay and optional heat exchange with the environment.
Buildings.Fluid.Actuators.UsersGuide Added a user's guide for actuator models.
Buildings.Fluid.Interfaces.ConservationEquation
Buildings.Fluid.Interfaces.StaticConservationEquation
These base classes have been added to simplify the implementation of dynamic and steady-state thermofluid models.
Buildings.Fluid.Data.Fuels Package with physical properties of fuels that are used by the boiler model.

The following existing components have been improved in a backward compatible way:

Buildings.Fluid
Buildings.Fluid.Actuators.Dampers.Exponential
Buildings.Fluid.Actuators.Dampers.VAVBoxExponential
Buildings.Fluid.Actuators.Dampers.MixingBox
Buildings.Fluid.Actuators.Dampers.MixingBoxMinimumFlow
Buildings.Fluid.Actuators.Valves.ThreeWayEqualPercentageLinear
Buildings.Fluid.Actuators.Valves.ThreeWayLinear
Buildings.Fluid.Actuators.Valves.TwoWayEqualPercentage
Buildings.Fluid.Actuators.Valves.TwoWayLinear
Buildings.Fluid.Actuators.Valves.TwoWayQuickOpening
Added an optional 2nd order lowpass filter for the input signal. The filter approximates the travel time of the actuators. It also makes the system of equations easier to solve because a step change in the input signal causes a gradual change in the actuator position.
Note that this filter affects the time response of closed loop control. Therefore, enabling the filter may require retuning of control loops. See the user's guide of the Buildings.Fluid.Actuators package.
Buildings.Fluid.Boilers.BoilerPolynomial Added computation of fuel usage and improved the documentation.
Buildings.Fluid.Movers.FlowMachine_y
Buildings.Fluid.Movers.FlowMachine_Nrpm
Buildings.Fluid.Movers.FlowMachine_dp
Buildings.Fluid.Movers.FlowMachine_m_flow
Added a 2nd order lowpass filter to the input signal. The filter approximates the startup and shutdown transients of fans or pumps. It also makes the system of equations easier to solve because a step change in the input signal causes a gradual change in the mass flow rate.
Note that this filter affects the time response of closed loop control. Therefore, enabling the filter may require retuning of control loops. See the user's guide of the Buildings.Fluid.Movers package.
Buildings.Fluid.Interfaces.StaticTwoPortHeatMassExchanger Changed model to use graphical implementation of models for pressure drop and conservation equations.
Buildings.Fluid.BaseClasses.PartialResistance
Buildings.Fluid.FixedResistances.FixedResistanceDpM
Buildings.Fluid.Actuators.BaseClasses.PartialTwoWayValve
Buildings.Fluid.Actuators.BaseClasses.PartialDamperExponential
Revised base classes and models to simplify object inheritance tree. Set m_flow_small to final in Buildings.Fluid.BaseClasses.PartialResistance, and removed its assignment in the other classes.
Buildings.Fluid.FixedResistances.FixedResistanceDpM
Buildings.Fluid.FixedResistances.SplitterFixedResistanceDpM
Improved documentation.
Buildings.HeatTransfer
Buildings.HeatTransfer.Windows.Functions.glassProperty Added the function glassPropertyUncoated that calculates the property for uncoated glass.
Buildings.Rooms
Buildings.Rooms.MixedAir Changed model to use new implementation of Buildings.HeatTransfer.Radiosity.OutdoorRadiosity in its base classes. This change leads to the use of the same equations for the radiative heat transfer between window and ambient as is used for the opaque constructions.

The following existing components have been improved in a non-backward compatible way:

Buildings.Fluid
Buildings.Fluid.Actuators.Valves.ThreeWayEqualPercentageLinear
Buildings.Fluid.Actuators.Valves.ThreeWayLinear
Buildings.Fluid.Actuators.Valves.TwoWayEqualPercentage
Buildings.Fluid.Actuators.Valves.TwoWayLinear
Buildings.Fluid.Actuators.Valves.TwoWayQuickOpening
Changed models to allow modeling of a fixed resistance that is within the controlled flow leg. This allows in some cases the avoidance of a nonlinear equation if a flow resistance is in series to the valve. This change required changing the parameter for the valve resistance dp_nominal to dpValve_nominal, and introducing the parameter dpFixed_nominal, with dpFixed_nominal=0 as its default value. Previous models that instantiate these components need to change the assignment of dp_nominal to an assignment of dpValve_nominal. See also Buildings.Fluid.Actuators.UsersGuide.
Buildings.HeatTransfer
Buildings.HeatTransfer.Radiosity.OutdoorRadiosity
Buildings.HeatTransfer.Windows.ExteriorHeatTransfer
Changed model to use new implementation of Buildings.HeatTransfer.Radiosity.OutdoorRadiosity. This change leads to the use of the same equations for the radiative heat transfer between window and ambient as is used for the opaque constructions.
Buildings.Controls
Buildings.Controls.SetPoints.OccupancySchedule Changed model to fix a bug that caused the output of the block to be incorrect when the simulation started at a time different from zero. When fixing this bug, the parameter startTime was removed, and the parameter endTime was renamed to period. The period always starts at t=0 seconds.

The following critical errors have been fixed (i.e., errors that can lead to wrong simulation results):

Buildings.Controls
Buildings.Controls.SetPoints.OccupancySchedule The output of the block was incorrect when the simulation started at a time different from zero.
Buildings.Fluid.HeatExchangers
Buildings.Fluid.HeatExchangers.DryCoilCounterFlow
Buildings.Fluid.HeatExchangers.WetCoilCounterFlow
Corrected error in assignment of dp2_nominal. The previous assignment caused a pressure drop in all except one element, instead of the opposite. This caused too high a flow resistance of the heat exchanger.

The following uncritical errors have been fixed (i.e., errors that do not lead to wrong simulation results, e.g., units are wrong or errors in documentation):

Buildings.BoundaryConditions
Buildings.BoundaryConditions.SkyTemperature.BlackBody Fixed error in BlackBody model that was causing a translation error when calTSky was set to Buildings.BoundaryConditions.Types.SkyTemperatureCalculation.HorizontalRadiation.
Buildings.Fluid
Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger Fixed wrong class reference in information section.
Buildings.Utilities
Buildings.Utilities.IO.BCVTB.Examples.MoistAir Updated fan parameters, which were still for version 0.12 of the Buildings library and hence caused a translation error with version 1.0 or higher.

The following trac tickets have been fixed:

Exterior longwave radiation exchange in window model
#51 Changed model to use new implementation of Buildings.HeatTransfer.Radiosity.OutdoorRadiosity. This change leads to the use of the same equations for the radiative heat transfer between window and ambient as is used for the opaque constructions.
#53 Fixed bug in Buildings.Controls.SetPoints.OccupancySchedule that led to wrong results when the simulation started at a time different from zero.

Note:

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_1_0_build2 Buildings.UsersGuide.ReleaseNotes.Version_1_0_build2

Version 1.0 build 2 has been released to correct model errors that were present in version 1.0 build 1. Both versions are compatible. In addition, version 1.0 build 2 contains improved documentation of various example models.

The following existing components have been improved in a backward compatible way:

Buildings.Controls
Buildings.Controls.Continuous
Buildings.Controls.Discrete
Buildings.Controls.SetPoints
Improved documentation of models and of examples.
Buildings.Airflow.Multizone
Buildings.Airflow.Multizone.DoorDiscretizedOpen
Buildings.Airflow.Multizone.DoorDiscretizedOperable
Changed the computation of the discharge coefficient to use the nominal density instead of the actual density. Computing sqrt(2/rho) sometimes causes warnings from the solver, as it seems to try negative values for the density during iterative solutions.
Buildings.Airflow.Multizone.Examples Improved documentation of examples.
Buildings.Examples.DualFanDualDuct
Buildings.Examples.DualFanDualDuct.Controls.RoomMixingBox Improved control of minimum air flow rate to avoid overheating.

The following critical errors have been fixed (i.e., errors that can lead to wrong simulation results):

Buildings.HeatTransfer
Buildings.HeatTransfer.Convection.Exterior Fixed error in assignment of wind-based convection coefficient. The old implementation did not take into account the surface roughness.
Buildings.Rooms
Buildings.Rooms.BaseClasses.SolarRadiationExchange In the previous version, the radiative properties of the long-wave spectrum instead of the solar spectrum have been used to compute the distribution of the solar radiation among the surfaces inside the room.
Buildings.Rooms.BaseClasses.MixedAir Added missing connect statement between window frame surface and window frame convection model. Prior to this bug fix, no convective heat transfer was computed between window frame and room air.
Buildings.Rooms.BaseClasses.HeatGain Fixed bug that caused convective heat gains to be removed from the room instead of added to the room.

The following trac tickets have been fixed:

Buildings.Fluid.HeatExchangers.Boreholes
#45 Dymola 2012 FD01 hangs when simulating a borehole heat exchanger. This was caused by a wrong release of memory in freeArray.c.
Buildings.Rooms
#46 The convective internal heat gain has the wrong sign.

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_1_0_build1 Buildings.UsersGuide.ReleaseNotes.Version_1_0_build1

Version 1.0 is the first official release of the Buildings library. Compared to the last pre-release, which is version 0.12, this version contains new models as well as significant improvements to the model formulation that leads to faster and more robust simulation. A detailed list of changes is shown below.

Version 1.0 is not backward compatible to version 0.12, i.e., models developed with versions 0.12 will require some changes in their parameters to work with version 1.0. The conversion script Buildings/Resources/Scripts/Dymola/ConvertBuildings_from_0.12_to_1.0.mos can help in converting old models to this version of the library.

The following new libraries have been added:

Buildings.Fluid.HeatExchangers.Boreholes This is a library with a model for a borehole heat exchanger.

The following new components have been added to existing libraries:

Buildings.Airflow.Multizone
Buildings.Airflow.Multizone.BaseClasses.windPressureLowRise Added a function that computes wind pressure on the facade of low-rise buildings.
Buildings.Examples
Buildings.Examples.ChillerPlant Added an example for a chilled water plant model.
Buildings.Fluid.Interfaces
Buildings.Fluid.Interfaces.UsersGuide Added a user's guide that describes the main functionality of all base classes.
Buildings.Fluid.Sources
Buildings.Fluid.Sources.Outside_Cp
Buildings.Fluid.Sources.Outside_CpLowRise
Added models to compute wind pressure on building facades.
Buildings.HeatTransfer
Buildings.HeatTransfer.Conductor Added a model for heat conduction in circular coordinates.
Buildings.Rooms.Examples
Buildings.Rooms.Examples.BESTEST Added BESTEST validation models.
Buildings.Utilities.Math
Buildings.Utilities.Math.Functions.cubicHermiteLinearExtrapolation
Buildings.Utilities.Math.Functions.splineDerivatives.
Added functions for cubic hermite spline interpolation, with option for monotone increasing (or decreasing) spline.

The following existing components have been improved in a backward compatible way:

Buildings.Airflow.Multizone
Buildings.Airflow.Multizone.BaseClasses.powerLaw This function has been reimplemented to handle zero flow rate in a more robust and more efficient way. This change improves all components that model flow resistance in the package Buildings.Airflow.Multizone.
Buildings.BoundaryConditions.WeatherData
Buildings.BoundaryConditions.WeatherData.ReaderTMY3 This model has now the option of using a constant value, using the data from the weather file, or from an input connector for 7 variables, including atmospheric pressure, relative humidity, dry bulb temperature, global horizontal radiation, diffuse horizontal radiation, wind direction and wind speed.
Buildings.Fluid
Buildings.Fluid.Actuators.BaseClasses.PartialActuator
Buildings.Fluid.Actuators.BaseClasses.PartialDamperExponential
Buildings.Fluid.Actuators.BaseClasses.PartialTwoWayValve
Buildings.Fluid.BaseClasses.PartialResistance
Buildings.Fluid.BaseClasses.FlowModels.basicFlowFunction_dp
Buildings.Fluid.BaseClasses.FlowModels.basicFlowFunction_m_flow
Buildings.Fluid.Interfaces.StaticTwoPortHeatMassExchanger
The computation of the linearized flow resistance has been moved from the functions to the model, i.e., into an equation section. If the linear implementation is in a function body, then a symbolic processor may not invert the equation. This can lead to systems of coupled equations in cases where an explicit solution is possible. In addition, the handling of zero flow rate has been improved for the nonlinear pressure drop model. These improvements affect all models in Buildings.Fluid that compute flow resistance.
Buildings.Fluid.HeatExchangers
Buildings.Fluid.HeatExchangers.HeaterCoolerPrescribed This model can now be configured as a steady-state or dynamic model.
Buildings.Fluid.HeatExchangers.DryCoilCounterFlow
Buildings.Fluid.HeatExchangers.WetCoilCounterFlow
Buildings.Fluid.HeatExchangers.DryCoilDiscretized
Buildings.Fluid.HeatExchangers.WetCoilDiscretized
The implementation for handling zero flow rate, if the models are used as steady-state models, have been improved.
Buildings.Fluid.HeatExchangers.BaseClasses.ntu_epsilonZ Changed implementation to use Modelica.Media.Common.OneNonLinearEquation instead of Buildings.Utilities.Math.BaseClasses.OneNonLinearEquation, which was removed for this version of the library.
Buildings.Fluid.HeatExchangers.CoolingTowers
Buildings.Fluid.HeatExchangers.CoolingTowers.YorkCalc
Buildings.Fluid.HeatExchangers.CoolingTowers.FixedApproach
These models are now based on a new base class Buildings.Fluid.HeatExchangers.CoolingTowers.BaseClasses.CoolingTower. This allows using the models as replaceable models without warning when checking the model.
Buildings.Fluid.HeatExchangers.CoolingTowers.YorkCalc Changed implementation of performance curve to avoid division by zero.
Buildings.Fluid.MassExchangers
Buildings.Fluid.MassExchangers.HumidifierPrescribed This model can now be configured as a steady-state or dynamic model.
Buildings.Fluid.Sensors
Buildings.Fluid.Sensors.*TwoPort All sensors with two ports, except for the mass flow rate sensor, have been revised to add sensor dynamics. Adding sensor dynamics avoids numerical problems when mass flow rates are close to zero and the sensor is configured to allow flow reversal. See Buildings.Fluid.Sensors.UsersGuide for details.
Buildings.Fluid.Storage
Buildings.Fluid.Storage.Stratified
Buildings.Fluid.Storage.StratifiedEnhanced
Changed the implementation of the model Buoyancy to make it differentiable in the temperatures.
Buildings.Media
Buildings.Media.Interfaces.PartialSimpleMedium
Buildings.Media.Interfaces.PartialSimpleIdealGasMedium
Moved the assignment of the stateSelect attribute for the BaseProperties to the model Buildings.Fluid.MixingVolumes.MixingVolume. This allows to handle it differently for steady-state and dynamic models.
Buildings.Utilities.Psychrometrics
Buildings.Utilities.Psychrometrics.Functions.TDewPoi_pW Changed implementation to use Modelica.Media.Common.OneNonLinearEquation instead of Buildings.Utilities.Math.BaseClasses.OneNonLinearEquation, which was removed for this version of the library.

The following existing components have been improved in a non-backward compatible way:

Buildings.Airflow.Multizone
Buildings.Airflow.Multizone.MediumColumnDynamic The implementation has been changed to better handle mass flow rates near zero flow. This required the introduction of a new parameter m_flow_nominal that is used for the regularization near zero mass flow rate.
Buildings.Fluid
Buildings.Fluid.Storage.Examples.Stratified
Buildings.Fluid.MixingVolumes
Removed the parameters use_T_start and h_start, as T_start is more convenient to use than h_start for building simulation.
Buildings.Fluid.Boilers
Buildings.Fluid.Boilers.BoilerPolynomial The parameter dT_nominal has been removed as it can be computed from the parameter m_flow_nominal. This change was needed to avoid a non-literal value for the nominal attribute for the mass flow rate in the pressure drop model.
Buildings.Fluid.MixingVolumes
Buildings.Fluid.MixingVolumes.MixingVolume
Buildings.Fluid.MixingVolumes.MixingVolumeDryAir
Buildings.Fluid.MixingVolumes.MixingVolumeMoistAir
The implementation has been changed to better handle mass flow rates near zero flow if the components have exactly two fluid ports connected. This required the introduction of a new parameter m_flow_nominal that is used for the regularization near zero mass flow rate.
Buildings.Fluid.Movers
Buildings.Fluid.Movers.FlowMachine_y
Buildings.Fluid.Movers.FlowMachine_Nrpm
Buildings.Fluid.Movers.FlowMachine_dp
Buildings.Fluid.Movers.FlowMachine_m_flow
The performance data are now defined through records and not through replaceable functions. The performance data now needs to be declared in the form
 pressure(V_flow_nominal={0,V_flow_nominal,2*V_flow_nominal},
          dp_nominal={2*dp_nominal,dp_nominal,0})
where pressure is an instance of a record. A similar declaration is used for power and efficiency.
The parameter m_flow_nominal has been removed from FlowMachine_y and FlowMachine_Nrpm.
The parameter m_flow_max has been replaced by m_flow_nominal in FlowMachine_m_flow.
The implementation of the pressure drop computation as a function of speed and volume flow rate has been revised to avoid a singularity near zero volume flow rate and zero speed.
The implementation has also been simplified to avoid using two different flow paths if the models are configured for steady-state or dynamic simulation.
Buildings.Fluid.Interfaces
Buildings.Fluid.Interfaces.FourPortHeatMassExchanger
Buildings.Fluid.Interfaces.PartialDynamicStaticFourPortHeatMassExchanger
Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger
Buildings.Fluid.Interfaces.PartialDynamicStaticTwoPortHeatMassExchanger
Buildings.Fluid.Interfaces.ConservationEquation
The implementation has been changed to better handle mass flow rates near zero flow if the components have exactly two fluid ports connected.
Buildings.Fluid.Sensors
Buildings.Fluid.Sensors.TemperatureTwoPortDynamic This model has been deleted since the sensor Buildings.Fluid.Sensors.TemperatureTwoPort has been revised and can now also be used as a dynamic model of a sensor.
Buildings.Fluid.Interfaces
Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface Renamed to Buildings.Fluid.Interfaces.PartialTwoPortInterface
Buildings.Fluid.Interfaces.PartialStaticStaticTwoPortHeatMassExchanger Renamed to Buildings.Fluid.Interfaces.StaticTwoPortHeatMassExchanger
Buildings.Fluid.Interfaces.PartialTwoPortHeatMassExchanger Renamed to Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger
Buildings.Fluid.Interfaces.PartialFourPort Renamed to Buildings.Fluid.Interfaces.FourPort
Buildings.Fluid.Interfaces.PartialStaticStaticFourPortHeatMassExchanger Renamed to Buildings.Fluid.Interfaces.StaticFourPortHeatMassExchanger
Buildings.Fluid.Interfaces.PartialStaticFourPortInterface Renamed to Buildings.Fluid.Interfaces.PartialFourPortInterface
Buildings.Fluid.Interfaces.PartialFourPortHeatMassExchanger Renamed to Buildings.Fluid.Interfaces.FourPortHeatMassExchanger
Buildings.Utilities.Math
Buildings.Utilities.Math.BaseClasses.OneNonLinearEquation This package has been removed, and all functions have been revised to use Modelica.Media.Common.OneNonLinearEquation.
Buildings.Utilities.Reports
Buildings.Utilities.Reports.Printer
Buildings.Utilities.Reports.printRealArray
Changed parameter precision to significantDigits and minimumWidth to minimumLength to use the same terminology as the Modelica Standard Library.

The following critical errors have been fixed (i.e., errors that can lead to wrong simulation results):

Buildings.BoundaryConditions
Buildings.BoundaryConditions.SkyTemperature.BlackBody Fixed error in if-then statement that led to a selection of the wrong branch to compute the sky temperature.
Buildings.Media
Buildings.Media.PartialSimpleMedium
Buildings.Media.GasesConstantDensity.SimpleAir
Fixed error in assignment of singleState parameter. This change can lead to different initial conditions if the density of water is modeled as a function of pressure, or if the medium model Buildings.Media.GasesConstantDensity.SimpleAir is used.
Buildings.Media.GasesConstantDensity
Buildings.Media.GasesConstantDensity.MoistAir
Buildings.Media.GasesConstantDensity.MoistAirUnsaturated
Buildings.Media.GasesConstantDensity.SimpleAir
Fixed error in the function density which returned a non-constant density, and added a call to ModelicaError(...) in setState_dTX since this function cannot assign the medium pressure based on the density (as density is a constant in this model).
Buildings.Media.Interfaces.PartialSimpleIdealGasMedium Updated package with a new copy from the Modelica Standard Library, since the Modelica Standard Library fixed a bug in computing the internal energy of the medium. This bug led to very fast temperature transients at the start of the simulation.
Buildings.Media.Interfaces.PartialSimpleMedium Fixed bug in function density, which always returned d_const, regardless of the value of constantDensity.
Buildings.Media.GasesPTDecoupled Fixed bug in u=h-R*T, which is only valid for ideal gases. For this medium, the function is u=h-pStd/dStp.
Buildings.Media.GasesConstantDensity Fixed bug in u=h-R*T, which is only valid for ideal gases. For this medium, the function is u=h-p/dStp.
Buildings.Rooms
Buildings.Rooms.MixedAir
Buildings.Rooms.BaseClasses.ExteriorBoundaryConditions
Fixed bug (ticket 35) that leads to the wrong solar heat gain for roofs and for floors. Prior to this bug fix, the outside facing surface of a ceiling received solar irradiation as if it were a floor and vice versa.
Buildings.Rooms.MixedAir
Buildings.Rooms.BaseClasses.ExteriorBoundaryConditionsWithWindow
Fixed bug (ticket 36) that leads to too high a surface temperature of the window frame when it receives solar radiation. The previous version did not compute the infrared radiation exchange between the window frame and the sky.

The following uncritical errors have been fixed (i.e., errors that do not lead to wrong simulation results, but, e.g., units are wrong or errors in documentation):

Buildings.BoundaryConditions
Buildings.BoundaryConditions.WeatherData.BaseClasses.ConvertRadiation Corrected wrong unit label.

The following trac tickets have been fixed:

Buildings.BoundaryConditions
#8 Add switches for new data.
#19 Shift the time for the radiation data 30 min forth and output the local civil time in the data reader.
#41 Using when-then sentences to reduce CPU time.
#43 Add a ConvertRadiation to convert the unit of radiation from TMY3.
Buildings.Fluid
#28 Move scripts to Buildings\Resources\Scripts\Dymola.
Buildings.HeatTransfer
#18 Add a smooth interpolation function to avoid the event.
Buildings.Media
#30 Removed non-required structurally incomplete annotation.
Buildings.Rooms
#35 Wrong surface tilt for radiation at exterior surfaces of floors and ceilings.
#36 High window frame temperatures.

Note:

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_12_0 Buildings.UsersGuide.ReleaseNotes.Version_0_12_0

Note: The packages whose name ends with Beta are still being validated.

The following critical error has been fixed (i.e. error that can lead to wrong simulation results):

Buildings.Rooms
Buildings.Rooms.BaseClasses.InfraredRadiationExchange The model Buildings.Rooms.BaseClasses.InfraredRadiationExchange had an error in the view factor approximation. The error caused too much radiosity to flow from large to small surfaces because the law of reciprocity for view factors was not satisfied. This led to low surface temperatures if a surface had a large area compared to other surfaces. The bug has been fixed by rewriting the view factor calculation.

The following improvements and additions have been made:

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_11_0 Buildings.UsersGuide.ReleaseNotes.Version_0_11_0

Note: The packages whose name ends with Beta are still being validated.

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_10_0 Buildings.UsersGuide.ReleaseNotes.Version_0_10_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_9_1 Buildings.UsersGuide.ReleaseNotes.Version_0_9_1

The following critical error has been fixed (i.e. error that can lead to wrong simulation results):

Buildings.Fluid.Storage.
Buildings.Fluid.Storage.StratifiedEnhanced The model Buildings.Fluid.Storage.BaseClasses.Stratifier had a sign error that lead to a wrong energy balance. The model that was affected by this error is Buildings.Fluid.Storage.StratifiedEnhanced. The model Buildings.Fluid.Storage.Stratified was not affected.
The bug has been fixed by using the newly introduced model Buildings.Fluid.Storage.BaseClasses.ThirdOrderStratifier. This model uses a third-order upwind scheme to reduce the numerical dissipation instead of the correction term that was used in Buildings.Fluid.Storage.BaseClasses.Stratifier. The model Buildings.Fluid.Storage.BaseClasses.Stratifier has been removed since it also led to significant overshoot in temperatures when the stratification was pronounced.

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_9_0 Buildings.UsersGuide.ReleaseNotes.Version_0_9_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_8_0 Buildings.UsersGuide.ReleaseNotes.Version_0_8_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_7_0 Buildings.UsersGuide.ReleaseNotes.Version_0_7_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_6_0 Buildings.UsersGuide.ReleaseNotes.Version_0_6_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_5_0 Buildings.UsersGuide.ReleaseNotes.Version_0_5_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_4_0 Buildings.UsersGuide.ReleaseNotes.Version_0_4_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_3_0 Buildings.UsersGuide.ReleaseNotes.Version_0_3_0

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_2_0 Buildings.UsersGuide.ReleaseNotes.Version_0_2_0

New in this version are models for two and three way valves. In addition, the Fluids package has been slightly revised. The package Fluid.BaseClasses has been added because in the previous version, partial models for fixed resistances where part of the Actuator package.

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Buildings.UsersGuide.ReleaseNotes.Version_0_1_0 Buildings.UsersGuide.ReleaseNotes.Version_0_1_0

First release of the library.

This version contains basic models for modeling building HVAC systems. It also contains new medium models in the package Buildings.Media. These medium models have simpler property functions than the ones from Modelica.Media. For example, there is medium model with constant heat capacity which is often sufficiently accurate for building HVAC simulation, in contrast to the more detailed models from Modelica.Media that are valid in a larger temperature range, at the expense of introducing non-linearities due to the medium properties.

Extends from Modelica.Icons.ReleaseNotes (Icon for release notes in documentation).


Automatically generated Tue Jan 8 08:28:44 2013.