Name | Description |
---|---|
cp_const | Constant specific heat capacity at constant pressure |
cv_const=cp_const - R_gas | Constant specific heat capacity at constant volume |
R_gas | medium specific gas constant |
MM_const | Molar mass |
eta_const | Constant dynamic viscosity |
lambda_const | Constant thermal conductivity |
T_min | Minimum temperature valid for medium model |
T_max | Maximum temperature valid for medium model |
T0=reference_T | Zero enthalpy temperature |
ThermodynamicState | Thermodynamic state of ideal gas |
FluidConstants | fluid constants |
BaseProperties | Base properties of ideal gas |
setState_pTX | Return thermodynamic state from p, T, and X or Xi |
setState_phX | Return thermodynamic state from p, h, and X or Xi |
setState_psX | Return thermodynamic state from p, s, and X or Xi |
setState_dTX | Return thermodynamic state from d, T, and X or Xi |
setSmoothState | Return thermodynamic state so that it smoothly approximates: if x > 0 then state_a else state_b |
pressure | Return pressure of ideal gas |
temperature | Return temperature of ideal gas |
density | Return density of ideal gas |
specificEnthalpy | Return specific enthalpy |
specificInternalEnergy | Return specific internal energy |
specificEntropy | Return specific entropy |
specificGibbsEnergy | Return specific Gibbs energy |
specificHelmholtzEnergy | Return specific Helmholtz energy |
dynamicViscosity | Return dynamic viscosity |
thermalConductivity | Return thermal conductivity |
specificHeatCapacityCp | Return specific heat capacity at constant pressure |
specificHeatCapacityCv | Return specific heat capacity at constant volume |
isentropicExponent | Return isentropic exponent |
velocityOfSound | Return velocity of sound |
specificEnthalpy_pTX | Return specific enthalpy from p, T, and X or Xi |
temperature_phX | Return temperature from p, h, and X or Xi |
density_phX | Return density from p, h, and X or Xi |
isentropicEnthalpy | Return isentropic enthalpy |
isobaricExpansionCoefficient | Returns overall the isobaric expansion coefficient beta |
isothermalCompressibility | Returns overall the isothermal compressibility factor |
density_derp_T | Returns the partial derivative of density with respect to pressure at constant temperature |
density_derT_p | Returns the partial derivative of density with respect to temperature at constant pressure |
density_derX | Returns the partial derivative of density with respect to mass fractions at constant pressure and temperature |
molarMass | Returns the molar mass of the medium |
Inherited | |
setState_pT | Return thermodynamic state from p and T |
setState_ph | Return thermodynamic state from p and h |
setState_ps | Return thermodynamic state from p and s |
setState_dT | Return thermodynamic state from d and T |
density_ph | Return density from p and h |
temperature_ph | Return temperature from p and h |
pressure_dT | Return pressure from d and T |
specificEnthalpy_dT | Return specific enthalpy from d and T |
specificEnthalpy_ps | Return specific enthalpy from p and s |
temperature_ps | Return temperature from p and s |
density_ps | Return density from p and s |
specificEnthalpy_pT | Return specific enthalpy from p and T |
density_pT | Return density from p and T |
ThermoStates | Enumeration type for independent variables |
mediumName="unusablePartialMedium" | Name of the medium |
substanceNames={mediumName} | Names of the mixture substances. Set substanceNames={mediumName} if only one substance. |
extraPropertiesNames=fill("", 0) | Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused |
singleState | = true, if u and d are not a function of pressure |
reducedX=true | = true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details) |
fixedX=false | = true if medium contains the equation X = reference_X |
reference_p=101325 | Reference pressure of Medium: default 1 atmosphere |
reference_T=298.15 | Reference temperature of Medium: default 25 deg Celsius |
reference_X=fill(1/nX, nX) | Default mass fractions of medium |
p_default=101325 | Default value for pressure of medium (for initialization) |
T_default=Modelica.SIunits.Conversions.from_degC(20) | Default value for temperature of medium (for initialization) |
h_default=specificEnthalpy_pTX(p_default, T_default, X_default) | Default value for specific enthalpy of medium (for initialization) |
X_default=reference_X | Default value for mass fractions of medium (for initialization) |
nS=size(substanceNames, 1) | Number of substances |
nX=nS | Number of mass fractions |
nXi=if fixedX then 0 else if reducedX then nS - 1 else nS | Number of structurally independent mass fractions (see docu for details) |
nC=size(extraPropertiesNames, 1) | Number of extra (outside of standard mass-balance) transported properties |
C_nominal=1.0e-6*ones(nC) | Default for the nominal values for the extra properties |
prandtlNumber | Return the Prandtl number |
heatCapacity_cp | alias for deprecated name |
heatCapacity_cv | alias for deprecated name |
beta | alias for isobaricExpansionCoefficient for user convenience |
kappa | alias of isothermalCompressibility for user convenience |
density_derp_h | Return density derivative w.r.t. pressure at const specific enthalpy |
density_derh_p | Return density derivative w.r.t. specific enthalpy at constant pressure |
specificEntropy_pTX | Return specific enthalpy from p, T, and X or Xi |
density_pTX | Return density from p, T, and X or Xi |
temperature_psX | Return temperature from p,s, and X or Xi |
density_psX | Return density from p, s, and X or Xi |
specificEnthalpy_psX | Return specific enthalpy from p, s, and X or Xi |
AbsolutePressure | Type for absolute pressure with medium specific attributes |
Density | Type for density with medium specific attributes |
DynamicViscosity | Type for dynamic viscosity with medium specific attributes |
EnthalpyFlowRate | Type for enthalpy flow rate with medium specific attributes |
MassFlowRate | Type for mass flow rate with medium specific attributes |
MassFraction | Type for mass fraction with medium specific attributes |
MoleFraction | Type for mole fraction with medium specific attributes |
MolarMass | Type for molar mass with medium specific attributes |
MolarVolume | Type for molar volume with medium specific attributes |
IsentropicExponent | Type for isentropic exponent with medium specific attributes |
SpecificEnergy | Type for specific energy with medium specific attributes |
SpecificInternalEnergy | Type for specific internal energy with medium specific attributes |
SpecificEnthalpy | Type for specific enthalpy with medium specific attributes |
SpecificEntropy | Type for specific entropy with medium specific attributes |
SpecificHeatCapacity | Type for specific heat capacity with medium specific attributes |
SurfaceTension | Type for surface tension with medium specific attributes |
Temperature | Type for temperature with medium specific attributes |
ThermalConductivity | Type for thermal conductivity with medium specific attributes |
PrandtlNumber | Type for Prandtl number with medium specific attributes |
VelocityOfSound | Type for velocity of sound with medium specific attributes |
ExtraProperty | Type for unspecified, mass-specific property transported by flow |
CumulativeExtraProperty | Type for conserved integral of unspecified, mass specific property |
ExtraPropertyFlowRate | Type for flow rate of unspecified, mass-specific property |
IsobaricExpansionCoefficient | Type for isobaric expansion coefficient with medium specific attributes |
DipoleMoment | Type for dipole moment with medium specific attributes |
DerDensityByPressure | Type for partial derivative of density with resect to pressure with medium specific attributes |
DerDensityByEnthalpy | Type for partial derivative of density with resect to enthalpy with medium specific attributes |
DerEnthalpyByPressure | Type for partial derivative of enthalpy with resect to pressure with medium specific attributes |
DerDensityByTemperature | Type for partial derivative of density with resect to temperature with medium specific attributes |
Choices | Types, constants to define menu choices |
constant SpecificHeatCapacity cp_const "Constant specific heat capacity at constant pressure";
constant SpecificHeatCapacity cv_const= cp_const - R_gas "Constant specific heat capacity at constant volume";
constant SpecificHeatCapacity R_gas "medium specific gas constant";
constant MolarMass MM_const "Molar mass";
constant DynamicViscosity eta_const "Constant dynamic viscosity";
constant ThermalConductivity lambda_const "Constant thermal conductivity";
constant Temperature T_min "Minimum temperature valid for medium model";
constant Temperature T_max "Maximum temperature valid for medium model";
constant Temperature T0= reference_T "Zero enthalpy temperature";
redeclare record extends ThermodynamicState "Thermodynamic state of ideal gas" AbsolutePressure p "Absolute pressure of medium"; Temperature T "Temperature of medium"; end ThermodynamicState;
redeclare record extends FluidConstants "fluid constants" end FluidConstants;
This is the most simple incompressible medium model, where specific enthalpy h and specific internal energy u are only a function of temperature T and all other provided medium quantities are assumed to be constant.
Type | Name | Default | Description |
---|---|---|---|
Advanced | |||
Boolean | preferredMediumStates | false | = true if StateSelect.prefer shall be used for the independent property variables of the medium |
redeclare replaceable model extends BaseProperties( T(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default), p(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default)) "Base properties of ideal gas" equation assert(T >= T_min and T <= T_max, " Temperature T (= " + String(T) + " K) is not in the allowed range (" + String(T_min) + " K <= T <= " + String(T_max) + " K) required from medium model \"" + mediumName + "\". "); h = specificEnthalpy_pTX(p,T,X); u = h-R*T; R = R_gas; d = p/(R*T); MM = MM_const; state.T = T; state.p = p;end BaseProperties;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare function setState_pTX "Return thermodynamic state from p, T, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input Temperature T "Temperature"; input MassFraction X[:]=reference_X "Mass fractions"; output ThermodynamicState state "thermodynamic state record"; algorithm state := ThermodynamicState(p=p,T=T); end setState_pTX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare function setState_phX "Return thermodynamic state from p, h, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input MassFraction X[:]=reference_X "Mass fractions"; output ThermodynamicState state "thermodynamic state record"; algorithm state := ThermodynamicState(p=p,T=T0+h/cp_const); end setState_phX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare replaceable function setState_psX "Return thermodynamic state from p, s, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEntropy s "Specific entropy"; input MassFraction X[:]=reference_X "Mass fractions"; output ThermodynamicState state "thermodynamic state record"; algorithm state := ThermodynamicState(p=p,T=Modelica.Math.exp(s/cp_const + Modelica.Math.log(reference_T)) + R_gas*Modelica.Math.log(p/reference_p)); end setState_psX;
Type | Name | Default | Description |
---|---|---|---|
Density | d | density [kg/m3] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | thermodynamic state record |
redeclare function setState_dTX "Return thermodynamic state from d, T, and X or Xi" extends Modelica.Icons.Function; input Density d "density"; input Temperature T "Temperature"; input MassFraction X[:]=reference_X "Mass fractions"; output ThermodynamicState state "thermodynamic state record"; algorithm state := ThermodynamicState(p=d*R_gas*T,T=T); end setState_dTX;
Type | Name | Default | Description |
---|---|---|---|
Real | x | m_flow or dp | |
ThermodynamicState | state_a | Thermodynamic state if x > 0 | |
ThermodynamicState | state_b | Thermodynamic state if x < 0 | |
Real | x_small | Smooth transition in the region -x_small < x < x_small |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Smooth thermodynamic state for all x (continuous and differentiable) |
redeclare function extends setSmoothState "Return thermodynamic state so that it smoothly approximates: if x > 0 then state_a else state_b" algorithm state := ThermodynamicState(p=Media.Common.smoothStep(x, state_a.p, state_b.p, x_small), T=Media.Common.smoothStep(x, state_a.T, state_b.T, x_small)); end setSmoothState;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
AbsolutePressure | p | Pressure [Pa] |
redeclare function extends pressure "Return pressure of ideal gas" algorithm p := state.p; end pressure;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
redeclare function extends temperature "Return temperature of ideal gas" algorithm T := state.T; end temperature;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
Density | d | Density [kg/m3] |
redeclare function extends density "Return density of ideal gas" algorithm d := state.p/(R_gas*state.T); end density;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy [J/kg] |
redeclare function extends specificEnthalpy "Return specific enthalpy" extends Modelica.Icons.Function; algorithm h := cp_const*(state.T-T0); end specificEnthalpy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | u | Specific internal energy [J/kg] |
redeclare function extends specificInternalEnergy "Return specific internal energy" extends Modelica.Icons.Function; algorithm // u := (cp_const-R_gas)*(state.T-T0); u := cp_const*(state.T-T0) - R_gas*state.T; end specificInternalEnergy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEntropy | s | Specific entropy [J/(kg.K)] |
redeclare function extends specificEntropy "Return specific entropy" extends Modelica.Icons.Function; algorithm s := cp_const*Modelica.Math.log(state.T/T0) - R_gas*Modelica.Math.log(state.p/reference_p); end specificEntropy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | g | Specific Gibbs energy [J/kg] |
redeclare function extends specificGibbsEnergy "Return specific Gibbs energy" extends Modelica.Icons.Function; algorithm g := cp_const*(state.T-T0) - state.T*specificEntropy(state); end specificGibbsEnergy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | f | Specific Helmholtz energy [J/kg] |
redeclare function extends specificHelmholtzEnergy "Return specific Helmholtz energy" extends Modelica.Icons.Function; algorithm f := (cp_const-R_gas)*(state.T-T0) - state.T*specificEntropy(state); end specificHelmholtzEnergy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
DynamicViscosity | eta | Dynamic viscosity [Pa.s] |
redeclare function extends dynamicViscosity "Return dynamic viscosity" algorithm eta := eta_const; end dynamicViscosity;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
ThermalConductivity | lambda | Thermal conductivity [W/(m.K)] |
redeclare function extends thermalConductivity "Return thermal conductivity" algorithm lambda := lambda_const; end thermalConductivity;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cp | Specific heat capacity at constant pressure [J/(kg.K)] |
redeclare function extends specificHeatCapacityCp "Return specific heat capacity at constant pressure" algorithm cp := cp_const; end specificHeatCapacityCp;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cv | Specific heat capacity at constant volume [J/(kg.K)] |
redeclare function extends specificHeatCapacityCv "Return specific heat capacity at constant volume" algorithm cv := cv_const; end specificHeatCapacityCv;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
IsentropicExponent | gamma | Isentropic exponent [1] |
redeclare function extends isentropicExponent "Return isentropic exponent" algorithm gamma := cp_const/cv_const; end isentropicExponent;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
VelocityOfSound | a | Velocity of sound [m/s] |
redeclare function extends velocityOfSound "Return velocity of sound " algorithm a := sqrt(cp_const/cv_const*R_gas*state.T); end velocityOfSound;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[nX] | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy at p, T, X [J/kg] |
redeclare function specificEnthalpy_pTX "Return specific enthalpy from p, T, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input Temperature T "Temperature"; input MassFraction X[nX] "Mass fractions"; output SpecificEnthalpy h "Specific enthalpy at p, T, X"; algorithm h := cp_const*(T-T0); end specificEnthalpy_pTX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[nX] | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
redeclare function temperature_phX "Return temperature from p, h, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input MassFraction X[nX] "Mass fractions"; output Temperature T "Temperature"; algorithm T := h/cp_const + T0; end temperature_phX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[nX] | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
Density | d | density [kg/m3] |
redeclare function density_phX "Return density from p, h, and X or Xi" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input MassFraction X[nX] "Mass fractions"; output Density d "density"; algorithm d := density(setState_phX(p,h,X)); end density_phX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p_downstream | downstream pressure [Pa] | |
ThermodynamicState | refState | reference state for entropy |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h_is | Isentropic enthalpy [J/kg] |
redeclare function extends isentropicEnthalpy "Return isentropic enthalpy" algorithm /* s = cp_const*log(refState.T/T0) - R_gas*log(refState.p/reference_p) = cp_const*log(state.T/T0) - R_gas*log(p_downstream/reference_p) log(state.T) = log(refState.T) + (R_gas/cp_const)*(log(p_downstream/reference_p) - log(refState.p/reference_p)) = log(refState.T) + (R_gas/cp_const)*log(p_downstream/refState.p) = log(refState.T) + log( (p_downstream/refState.p)^(R_gas/cp_const) ) = log( refState.T*(p_downstream/refState.p)^(R_gas/cp_const) ) state.T = refstate.T*(p_downstream/refstate.p)^(R_gas/cp_const) */ h_is := cp_const*(refState.T*(p_downstream/refState.p)^(R_gas/cp_const) - T0); end isentropicEnthalpy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
IsobaricExpansionCoefficient | beta | Isobaric expansion coefficient [1/K] |
redeclare function extends isobaricExpansionCoefficient "Returns overall the isobaric expansion coefficient beta" algorithm /* beta = 1/v * der(v,T), with v = 1/d, at constant pressure p: v = R*T/p der(v,T) = R/p beta = p/(R*T)*R/p = 1/T */ beta := 1/state.T; end isobaricExpansionCoefficient;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
IsothermalCompressibility | kappa | Isothermal compressibility [1/Pa] |
redeclare function extends isothermalCompressibility "Returns overall the isothermal compressibility factor" algorithm /* kappa = - 1/v * der(v,p), with v = 1/d at constant temperature T. v = R*T/p der(v,T) = -R*T/p^2 kappa = p/(R*T)*R*T/p^2 = 1/p */ kappa := 1/state.p; end isothermalCompressibility;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
DerDensityByPressure | ddpT | Density derivative w.r.t. pressure [s2/m2] |
redeclare function extends density_derp_T "Returns the partial derivative of density with respect to pressure at constant temperature" algorithm /* d = p/(R*T) ddpT = 1/(R*T) */ ddpT := 1/(R_gas*state.T); end density_derp_T;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
DerDensityByTemperature | ddTp | Density derivative w.r.t. temperature [kg/(m3.K)] |
redeclare function extends density_derT_p "Returns the partial derivative of density with respect to temperature at constant pressure" algorithm /* d = p/(R*T) ddpT = -p/(R*T^2) */ ddTp := -state.p/(R_gas*state.T*state.T); end density_derT_p;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
Density | dddX[nX] | Derivative of density w.r.t. mass fraction [kg/m3] |
redeclare function extends density_derX "Returns the partial derivative of density with respect to mass fractions at constant pressure and temperature" algorithm dddX := fill(0,nX); end density_derX;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
MolarMass | MM | Mixture molar mass [kg/mol] |
redeclare function extends molarMass "Returns the molar mass of the medium" algorithm MM := MM_const; end molarMass;