Buildings.Controls.Continuous

Package with models for discrete time controls

Information

This package contains component models for continuous time controls. For additional models, see also Modelica.Blocks.Discrete.

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

Name Description
Buildings.Controls.Continuous.LimPID LimPID P, PI, PD, and PID controller with limited output, anti-windup compensation and setpoint weighting
Buildings.Controls.Continuous.NumberOfRequests NumberOfRequests Outputs the number of signals that are above/below a certain threshold
Buildings.Controls.Continuous.OffTimer OffTimer Records the time since the input changed to false
Buildings.Controls.Continuous.PIDHysteresis PIDHysteresis PID controller with anti-windup, output limiter and output hysteresis
Buildings.Controls.Continuous.PIDHysteresisTimer PIDHysteresisTimer PID controller with anti-windup, hysteresis and timer to prevent short cycling
Buildings.Controls.Continuous.SignalRanker SignalRanker Ranks output signals such that y[i] >= y[i+1]
Buildings.Controls.Continuous.Examples Examples Collection of models that illustrate model use and test models
Buildings.Controls.Continuous.Validation Validation Collection of validation models

Buildings.Controls.Continuous.LimPID Buildings.Controls.Continuous.LimPID

P, PI, PD, and PID controller with limited output, anti-windup compensation and setpoint weighting

Buildings.Controls.Continuous.LimPID

Information

This model is similar to Modelica.Blocks.Continuous.LimPID, except for the following changes:

  1. It can be configured to have a reverse action.

    If the parameter reverseAction=false (the default), then u_m < u_s increases the controller output, otherwise the controller output is decreased. Thus,

    • for a heating coil with a two-way valve, set reverseAction = false,
    • for a cooling coils with a two-way valve, set reverseAction = true.
  2. It can be configured to enable an input port that allows resetting the controller output. The controller output can be reset as follows:

    • If reset = Buildings.Types.Reset.Disabled, which is the default, then the controller output is never reset.
    • If reset = Buildings.Types.Reset.Parameter, then a boolean input signal trigger is enabled. Whenever the value of this input changes from false to true, the controller output is reset by setting y to the value of the parameter y_reset.
    • If reset = Buildings.Types.Reset.Input, then a boolean input signal trigger is enabled. Whenever the value of this input changes from false to true, the controller output is reset by setting y to the value of the input signal y_reset_in.

    Note that this controller implements an integrator anti-windup. Therefore, for most applications, keeping the default setting of reset = Buildings.Types.Reset.Disabled is sufficient. Examples where it may be beneficial to reset the controller output are situations where the equipment control input should continuously increase as the equipment is switched on, such as as a light dimmer that may slowly increase the luminance, or a variable speed drive of a motor that should continuously increase the speed.

  3. The parameter limitsAtInit has been removed.
  4. Some parameters assignments in the instances have been made final.

Extends from Modelica.Blocks.Interfaces.SVcontrol (Single-Variable continuous controller).

Parameters

TypeNameDefaultDescription
SimpleControllercontrollerTypeModelica.Blocks.Types.Simple...Type of controller
Realk1Gain of controller [1]
TimeTi0.5Time constant of Integrator block [s]
TimeTd0.1Time constant of Derivative block [s]
RealyMax1Upper limit of output
RealyMin0Lower limit of output
Realwp1Set-point weight for Proportional block (0..1)
Realwd0Set-point weight for Derivative block (0..1)
RealNi0.9Ni*Ti is time constant of anti-windup compensation
RealNd10The higher Nd, the more ideal the derivative block
BooleanreverseActionfalseSet to true for throttling the water flow rate through a cooling coil controller
Initialization
InitPIDinitTypeModelica.Blocks.Types.InitPI...Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)
Realxi_start0Initial or guess value value for integrator output (= integrator state)
Realxd_start0Initial or guess value for state of derivative block
Realy_start0Initial value of output
Integrator reset
ResetresetBuildings.Types.Reset.DisabledType of controller output reset
Realy_resetxi_startValue to which the controller output is reset if the boolean trigger has a rising edge, used if reset == Buildings.Types.Reset.Parameter
Advanced
Booleanstricttrue= true, if strict limits with noEvent(..)

Connectors

TypeNameDescription
input RealInputu_sConnector of setpoint input signal
input RealInputu_mConnector of measurement input signal
output RealOutputyConnector of actuator output signal
input BooleanInputtriggerResets the controller output when trigger becomes true
input RealInputy_reset_inInput signal for state to which integrator is reset, enabled if reset = Buildings.Types.Reset.Input

Modelica definition

block LimPID "P, PI, PD, and PID controller with limited output, anti-windup compensation and setpoint weighting" extends Modelica.Blocks.Interfaces.SVcontrol; output Real controlError=u_s - u_m "Control error (set point - measurement)"; parameter Modelica.Blocks.Types.SimpleController controllerType=Modelica.Blocks.Types.SimpleController.PID "Type of controller"; parameter Real k( min=0, unit="1") = 1 "Gain of controller"; parameter Modelica.SIunits.Time Ti(min=Modelica.Constants.small) = 0.5 "Time constant of Integrator block"; parameter Modelica.SIunits.Time Td(min=0) = 0.1 "Time constant of Derivative block"; parameter Real yMax(start=1) = 1 "Upper limit of output"; parameter Real yMin=0 "Lower limit of output"; parameter Real wp(min=0) = 1 "Set-point weight for Proportional block (0..1)"; parameter Real wd(min=0) = 0 "Set-point weight for Derivative block (0..1)"; parameter Real Ni(min=100*Modelica.Constants.eps) = 0.9 "Ni*Ti is time constant of anti-windup compensation"; parameter Real Nd(min=100*Modelica.Constants.eps) = 10 "The higher Nd, the more ideal the derivative block"; parameter Modelica.Blocks.Types.InitPID initType=Modelica.Blocks.Types.InitPID.DoNotUse_InitialIntegratorState "Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)"; // Removed as the Limiter block no longer uses this parameter. // parameter Boolean limitsAtInit = true // "= false, if limits are ignored during initialization" // annotation(Evaluate=true, Dialog(group="Initialization")); parameter Real xi_start=0 "Initial or guess value value for integrator output (= integrator state)"; parameter Real xd_start=0 "Initial or guess value for state of derivative block"; parameter Real y_start=0 "Initial value of output"; parameter Boolean strict=true "= true, if strict limits with noEvent(..)"; parameter Boolean reverseAction=false "Set to true for throttling the water flow rate through a cooling coil controller"; parameter Buildings.Types.Reset reset=Buildings.Types.Reset.Disabled "Type of controller output reset"; parameter Real y_reset=xi_start "Value to which the controller output is reset if the boolean trigger has a rising edge, used if reset == Buildings.Types.Reset.Parameter"; Modelica.Blocks.Interfaces.BooleanInput trigger if reset <> Buildings.Types.Reset.Disabled "Resets the controller output when trigger becomes true"; Modelica.Blocks.Interfaces.RealInput y_reset_in if reset == Buildings.Types.Reset.Input "Input signal for state to which integrator is reset, enabled if reset = Buildings.Types.Reset.Input"; Modelica.Blocks.Math.Add addP(k1=revAct*wp, k2=-revAct) "Adder for P gain"; Modelica.Blocks.Math.Add addD(k1=revAct*wd, k2=-revAct) if with_D "Adder for D gain"; Modelica.Blocks.Math.Gain P(k=1) "Proportional term"; Utilities.Math.IntegratorWithReset I( final reset=if reset == Buildings.Types.Reset.Disabled then reset else Buildings.Types.Reset.Input, final y_reset=y_reset, final k=unitTime/Ti, final y_start=xi_start, final initType=if initType == Modelica.Blocks.Types.InitPID.SteadyState then Modelica.Blocks.Types.Init.SteadyState else if initType == Modelica.Blocks.Types.InitPID.InitialState or initType == Modelica.Blocks.Types.InitPID.DoNotUse_InitialIntegratorState then Modelica.Blocks.Types.Init.InitialState else Modelica.Blocks.Types.Init.NoInit) if with_I "Integral term"; Modelica.Blocks.Continuous.Derivative D( final k=Td/unitTime, final T=max([Td/Nd, 1.e-14]), final x_start=xd_start, final initType=if initType == Modelica.Blocks.Types.InitPID.SteadyState or initType == Modelica.Blocks.Types.InitPID.InitialOutput then Modelica.Blocks.Types.Init.SteadyState else if initType == Modelica.Blocks.Types.InitPID.InitialState then Modelica.Blocks.Types.Init.InitialState else Modelica.Blocks.Types.Init.NoInit) if with_D "Derivative term"; Modelica.Blocks.Math.Add3 addPID( final k1=1, final k2=1, final k3=1) "Adder for the gains"; protected constant Modelica.SIunits.Time unitTime=1; final parameter Real revAct=if reverseAction then -1 else 1 "Switch for sign for reverse action"; parameter Boolean with_I=controllerType == Modelica.Blocks.Types.SimpleController.PI or controllerType == Modelica.Blocks.Types.SimpleController.PID "Boolean flag to enable integral action"; parameter Boolean with_D=controllerType == Modelica.Blocks.Types.SimpleController.PD or controllerType == Modelica.Blocks.Types.SimpleController.PID "Boolean flag to enable derivative action"; Modelica.Blocks.Sources.Constant Dzero(final k=0) if not with_D "Zero input signal"; Modelica.Blocks.Sources.Constant Izero(final k=0) if not with_I "Zero input signal"; Modelica.Blocks.Interfaces.RealInput y_reset_internal "Internal connector for controller output reset"; Modelica.Blocks.Math.Add3 addI(final k1=revAct, final k2=-revAct) if with_I "Adder for I gain"; Modelica.Blocks.Math.Add addSat(final k1=+1, final k2=-1) if with_I "Adder for integrator feedback"; Modelica.Blocks.Math.Gain gainPID(final k=k) "Multiplier for control gain"; Modelica.Blocks.Math.Gain gainTrack(k=1/(k*Ni)) if with_I "Gain for anti-windup compensation"; Modelica.Blocks.Nonlinear.Limiter limiter( final uMax=yMax, final uMin=yMin, final strict=strict) "Output limiter"; Modelica.Blocks.Sources.RealExpression intRes(final y=y_reset_internal/k - addPID.u1 - addPID.u2) if reset <> Buildings.Types.Reset.Disabled "Signal source for integrator reset"; initial equation if initType == Modelica.Blocks.Types.InitPID.InitialOutput then gainPID.y = y_start; end if; equation assert(yMax >= yMin, "LimPID: Limits must be consistent. However, yMax (=" + String(yMax) + ") < yMin (=" + String(yMin) + ")"); if initType == Modelica.Blocks.Types.InitPID.InitialOutput and (y_start < yMin or y_start > yMax) then Modelica.Utilities.Streams.error("LimPID: Start value y_start (=" + String( y_start) + ") is outside of the limits of yMin (=" + String(yMin) + ") and yMax (=" + String(yMax) + ")"); end if; // Equations for conditional connectors connect(y_reset_in, y_reset_internal); if reset <> Buildings.Types.Reset.Input then y_reset_internal = y_reset; end if; connect(u_s, addP.u1); connect(u_s, addD.u1); connect(u_s, addI.u1); connect(addP.y, P.u); connect(addD.y, D.u); connect(addI.y, I.u); connect(P.y, addPID.u1); connect(D.y, addPID.u2); connect(I.y, addPID.u3); connect(addPID.y, gainPID.u); connect(gainPID.y, addSat.u2); connect(gainPID.y, limiter.u); connect(limiter.y, addSat.u1); connect(limiter.y, y); connect(addSat.y, gainTrack.u); connect(gainTrack.y, addI.u3); connect(u_m, addP.u2); connect(u_m, addD.u2); connect(u_m, addI.u2); connect(Dzero.y, addPID.u2); connect(Izero.y, addPID.u3); connect(trigger, I.trigger); connect(intRes.y, I.y_reset_in); end LimPID;

Buildings.Controls.Continuous.NumberOfRequests Buildings.Controls.Continuous.NumberOfRequests

Outputs the number of signals that are above/below a certain threshold

Buildings.Controls.Continuous.NumberOfRequests

Information

Block that outputs the number of inputs that exceed a threshold. The parameter kind is used to determine the kind of the inequality. The table below shows the allowed settings.

Value of parameter kind Output signal incremented by 1 for each i ∈ {1, ..., nin} if
0 u[i] > threShold
1 u[i] ≥ threShold
2 u[i] ≤ threShold
3 u[i] < threShold

This model may be used to check how many rooms exceed a temperature threshold.

Extends from Modelica.Blocks.Icons.Block (Basic graphical layout of input/output block).

Parameters

TypeNameDefaultDescription
Integernin Number of inputs
RealthreShold0Threshold
Integerkind Set to 0 for u>threShold, to 1 for >=, to 2 for <= or to 3 for <

Connectors

TypeNameDescription
output IntegerOutputyNumber of input signals that violate the threshold
input RealInputu[nin]Input signals

Modelica definition

block NumberOfRequests "Outputs the number of signals that are above/below a certain threshold" extends Modelica.Blocks.Icons.Block; parameter Integer nin "Number of inputs"; parameter Real threShold=0 "Threshold"; parameter Integer kind "Set to 0 for u>threShold, to 1 for >=, to 2 for <= or to 3 for <"; Modelica.Blocks.Interfaces.IntegerOutput y "Number of input signals that violate the threshold"; Modelica.Blocks.Interfaces.RealInput u[nin] "Input signals"; algorithm y := 0; for i in 1:nin loop if kind == 0 then if u[i] > threShold then y := y + 1; end if; end if; if kind == 1 then if u[i] >= threShold then y := y + 1; end if; end if; if kind == 2 then if u[i] <= threShold then y := y + 1; end if; end if; if kind == 3 then if u[i] < threShold then y := y + 1; end if; end if; end for; end NumberOfRequests;

Buildings.Controls.Continuous.OffTimer Buildings.Controls.Continuous.OffTimer

Records the time since the input changed to false

Buildings.Controls.Continuous.OffTimer

Information

Timer that starts at the initial time with a value of 0, and gets reset each time the input signal switches to false.

For example, if the simulation starts at t = 10 and at t=11, the input becomes false, then the timer outputs y=t-10 for t < 11, and y=t-11 afterwards, unless the input becomes false again.

Extends from Modelica.Blocks.Interfaces.partialBooleanBlockIcon (This icon will be removed in future Modelica versions, use Modelica.Blocks.Icons.PartialBooleanBlock instead.).

Connectors

TypeNameDescription
input BooleanInputuConnector of Boolean input signal
output RealOutputyConnector of Real output signal

Modelica definition

model OffTimer "Records the time since the input changed to false" extends Modelica.Blocks.Interfaces.partialBooleanBlockIcon; Modelica.Blocks.Interfaces.BooleanInput u "Connector of Boolean input signal"; Modelica.Blocks.Interfaces.RealOutput y "Connector of Real output signal"; protected discrete Modelica.SIunits.Time entryTime "Time instant when u became true"; initial equation pre(entryTime) = time; equation when (not u) then entryTime = time; end when; y = time - entryTime; end OffTimer;

Buildings.Controls.Continuous.PIDHysteresis Buildings.Controls.Continuous.PIDHysteresis

PID controller with anti-windup, output limiter and output hysteresis

Buildings.Controls.Continuous.PIDHysteresis

Information

Block of a controller for set point tracking with a hysteresis element that switches the controller on and off.

If the controller is off, and the control error becomes larger than eOn, then the controller switches to on and remains on until the control error is smaller than eOff. When the controller is on, the set point tracking can be done using a P-, PI-, or PID-controller. In its off-mode, the control output is zero. Thus, the parameters yMin and yMax are used to constrain the output of the controller during its on mode only. This can be used, for example, to modulate a device between 0.3 and 1.0, and switch it to off when the control error is small enough.

Extends from Modelica.Blocks.Interfaces.SVcontrol (Single-Variable continuous controller).

Parameters

TypeNameDefaultDescription
Hysteresis
RealeOn1if off and control error > eOn, switch to set point tracking
RealeOff-eOnif on and control error < eOff, set y=0
Booleanpre_y_startfalseValue of hysteresis output at initial time
Set point tracking
SimpleControllercontrollerTypeModelica.Blocks.Types.Simple...Type of controller
Realk1Gain of controller
TimeTi Time constant of Integrator block [s]
TimeTd Time constant of Derivative block [s]
RealyMax1Upper limit of output
RealyMin0Lower limit of output
Realwp1Set-point weight for Proportional block (0..1)
Realwd0Set-point weight for Derivative block (0..1)
RealNi0.9Ni*Ti is time constant of anti-windup compensation
RealNd10The higher Nd, the more ideal the derivative block
BooleanreverseActionfalseSet to true to enable reverse action (such as for a cooling coil controller)
Initialization
InitPIDinitTypeModelica.Blocks.Types.InitPI...Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)
Realxi_start0Initial or guess value value for integrator output (= integrator state)
Realxd_start0Initial or guess value for state of derivative block
Realy_start0Initial value of output
Advanced
Booleanstricttrue= true, if strict limits with noEvent(..)

Connectors

TypeNameDescription
input RealInputu_sConnector of setpoint input signal
input RealInputu_mConnector of measurement input signal
output RealOutputyConnector of actuator output signal

Modelica definition

model PIDHysteresis "PID controller with anti-windup, output limiter and output hysteresis" extends Modelica.Blocks.Interfaces.SVcontrol; parameter Real eOn=1 "if off and control error > eOn, switch to set point tracking"; parameter Real eOff=-eOn "if on and control error < eOff, set y=0"; parameter Boolean pre_y_start=false "Value of hysteresis output at initial time"; parameter Modelica.Blocks.Types.SimpleController controllerType=Modelica.Blocks.Types.SimpleController.PID "Type of controller"; parameter Real k=1 "Gain of controller"; parameter Modelica.SIunits.Time Ti "Time constant of Integrator block"; parameter Modelica.SIunits.Time Td "Time constant of Derivative block"; parameter Real yMax=1 "Upper limit of output"; parameter Real yMin=0 "Lower limit of output"; parameter Real wp=1 "Set-point weight for Proportional block (0..1)"; parameter Real wd=0 "Set-point weight for Derivative block (0..1)"; parameter Real Ni=0.9 "Ni*Ti is time constant of anti-windup compensation"; parameter Real Nd=10 "The higher Nd, the more ideal the derivative block"; parameter Boolean reverseAction=false "Set to true to enable reverse action (such as for a cooling coil controller)"; parameter Modelica.Blocks.Types.InitPID initType=Modelica.Blocks.Types.InitPID.DoNotUse_InitialIntegratorState "Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)"; parameter Real xi_start=0 "Initial or guess value value for integrator output (= integrator state)"; parameter Real xd_start=0 "Initial or guess value for state of derivative block"; parameter Real y_start=0 "Initial value of output"; parameter Boolean strict=true "= true, if strict limits with noEvent(..)"; LimPID PID( final controllerType=controllerType, final k=k, final Ti=Ti, final yMax=yMax, final yMin=yMin, final wp=wp, final wd=wd, final Ni=Ni, final Nd=Nd, final initType=initType, final xi_start=xi_start, final xd_start=xd_start, final y_start=y_start, final Td=Td, final reverseAction=reverseAction, final strict=strict) "Controller for room temperature"; Modelica.Blocks.Logical.Hysteresis hys( final pre_y_start=pre_y_start, final uLow=eOff, final uHigh=eOn) "Hysteresis element to switch controller on and off"; Modelica.Blocks.Math.Feedback feeBac; protected Modelica.Blocks.Logical.Switch swi; Modelica.Blocks.Sources.Constant zer(final k=0) "Zero signal"; Modelica.Blocks.Logical.Switch swi1; equation assert(eOff < eOn, "Wrong controller parameters. Require eOff < eOn."); connect(zer.y, swi.u3); connect(swi.y, y); connect(u_m, PID.u_m); connect(hys.y, swi.u2); connect(PID.y, swi.u1); connect(u_s, feeBac.u1); connect(u_m, feeBac.u2); connect(feeBac.y, hys.u); connect(u_s, swi1.u1); connect(hys.y, swi1.u2); connect(u_m, swi1.u3); connect(swi1.y, PID.u_s); end PIDHysteresis;

Buildings.Controls.Continuous.PIDHysteresisTimer Buildings.Controls.Continuous.PIDHysteresisTimer

PID controller with anti-windup, hysteresis and timer to prevent short cycling

Buildings.Controls.Continuous.PIDHysteresisTimer

Information

Block of a controller for set point tracking with a hysteresis element that switches the controller on and off, and a timer that prevents the controller to short cycle.

The controller is similar to Buildings.Controls.Continuous.PIDHysteresis but in addition, it has a timer that prevents the controller from switching to on too fast. When the controller switches off, the timer starts and avoids the controller from switching on until minOffTime seconds elapsed.

Extends from Modelica.Blocks.Interfaces.SVcontrol (Single-Variable continuous controller).

Parameters

TypeNameDefaultDescription
On/off controller
RealminOffTime600Minimum time that devices needs to be off before it can run again
RealeOn1if off and control error > eOn, switch to set point tracking
RealeOff-eOnif on and control error < eOff, set y=0
Booleanpre_y_startfalseValue of hysteresis output at initial time
Set point tracking
SimpleControllercontrollerTypeModelica.Blocks.Types.Simple...Type of controller
Realk1Gain of controller
TimeTi Time constant of Integrator block [s]
TimeTd Time constant of Derivative block [s]
RealyMax1Upper limit of modulating output
RealyMin0.3Lower limit of modulating output (before switch to 0)
Realwp1Set-point weight for Proportional block (0..1)
Realwd0Set-point weight for Derivative block (0..1)
RealNi0.9Ni*Ti is time constant of anti-windup compensation
RealNd10The higher Nd, the more ideal the derivative block
BooleanreverseActionfalseSet to true to enable reverse action (such as for a cooling coil controller)
Initialization
InitPIDinitTypeModelica.Blocks.Types.InitPI...Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)
Realxi_start0Initial or guess value value for integrator output (= integrator state)
Realxd_start0Initial or guess value for state of derivative block
Realy_start0Initial value of output
Advanced
Booleanstricttrue= true, if strict limits with noEvent(..)

Connectors

TypeNameDescription
input RealInputu_sConnector of setpoint input signal
input RealInputu_mConnector of measurement input signal
output RealOutputyConnector of actuator output signal
output RealOutputtOnTime since boiler switched on
output RealOutputtOffTime since boiler switched off
output BooleanOutputonOutputs true if boiler is on

Modelica definition

model PIDHysteresisTimer "PID controller with anti-windup, hysteresis and timer to prevent short cycling" extends Modelica.Blocks.Interfaces.SVcontrol; parameter Real minOffTime=600 "Minimum time that devices needs to be off before it can run again"; parameter Real eOn=1 "if off and control error > eOn, switch to set point tracking"; parameter Real eOff=-eOn "if on and control error < eOff, set y=0"; parameter Boolean pre_y_start=false "Value of hysteresis output at initial time"; parameter Modelica.Blocks.Types.SimpleController controllerType=Modelica.Blocks.Types.SimpleController.PID "Type of controller"; parameter Real k=1 "Gain of controller"; parameter Modelica.SIunits.Time Ti "Time constant of Integrator block"; parameter Modelica.SIunits.Time Td "Time constant of Derivative block"; parameter Real yMax=1 "Upper limit of modulating output"; parameter Real yMin=0.3 "Lower limit of modulating output (before switch to 0)"; parameter Real wp=1 "Set-point weight for Proportional block (0..1)"; parameter Real wd=0 "Set-point weight for Derivative block (0..1)"; parameter Real Ni=0.9 "Ni*Ti is time constant of anti-windup compensation"; parameter Real Nd=10 "The higher Nd, the more ideal the derivative block"; parameter Boolean reverseAction=false "Set to true to enable reverse action (such as for a cooling coil controller)"; parameter Modelica.Blocks.Types.InitPID initType=Modelica.Blocks.Types.InitPID.DoNotUse_InitialIntegratorState "Type of initialization (1: no init, 2: steady state, 3: initial state, 4: initial output)"; parameter Real xi_start=0 "Initial or guess value value for integrator output (= integrator state)"; parameter Real xd_start=0 "Initial or guess value for state of derivative block"; parameter Real y_start=0 "Initial value of output"; parameter Boolean strict=true "= true, if strict limits with noEvent(..)"; Modelica.Blocks.Interfaces.RealOutput tOn "Time since boiler switched on"; Modelica.Blocks.Interfaces.RealOutput tOff "Time since boiler switched off"; LimPID con( final controllerType=controllerType, final k=k, final Ti=Ti, final Td=Td, final wp=wp, final wd=wd, final Ni=Ni, final Nd=Nd, final initType=initType, final xi_start=xi_start, final xd_start=xd_start, final y_start=y_start, final yMin=yMin, final yMax=yMax, final reverseAction=reverseAction, final strict=strict) "Controller to track setpoint"; OffTimer offHys; Modelica.Blocks.Logical.Timer onTimer; Modelica.Blocks.Logical.Timer offTimer; Modelica.Blocks.Interfaces.BooleanOutput on "Outputs true if boiler is on"; Modelica.Blocks.Math.Feedback feeBac; Modelica.Blocks.Logical.Hysteresis hys( final pre_y_start=pre_y_start, final uLow=eOff, final uHigh=eOn) "Hysteresis element to switch controller on and off"; protected Modelica.Blocks.Sources.Constant zer(final k=0) "Zero signal"; Modelica.Blocks.Logical.Switch switch2; Modelica.Blocks.Logical.GreaterEqualThreshold greaterEqualThreshold(threshold =minOffTime); Modelica.Blocks.Logical.And and3; Modelica.Blocks.Logical.Not not1; Modelica.Blocks.Logical.Switch switch1; equation connect(u_m, con.u_m); connect(zer.y, switch2.u3); connect(switch2.y, y); connect(and3.y, switch2.u2); connect(greaterEqualThreshold.y, and3.u1); connect(offHys.y, greaterEqualThreshold.u); connect(con.y, switch2.u1); connect(onTimer.y, tOn); connect(offTimer.y, tOff); connect(and3.y, on); connect(and3.y, onTimer.u); connect(and3.y, not1.u); connect(not1.y, offTimer.u); connect(and3.y, switch1.u2); connect(u_s, switch1.u1); connect(u_m, switch1.u3); connect(switch1.y, con.u_s); connect(u_s, feeBac.u1); connect(u_m, feeBac.u2); connect(feeBac.y, hys.u); connect(hys.y, offHys.u); connect(hys.y, and3.u2); end PIDHysteresisTimer;

Buildings.Controls.Continuous.SignalRanker Buildings.Controls.Continuous.SignalRanker

Ranks output signals such that y[i] >= y[i+1]

Buildings.Controls.Continuous.SignalRanker

Information

Block that sorts the input signal u[:] such that the output signal satisfies y[i] >= y[i+1] for all i=1, ..., nin-1.

This block may for example be used in a variable air volume flow controller to access the position of the dampers that are most open.

Extends from Modelica.Blocks.Interfaces.MIMO (Multiple Input Multiple Output continuous control block).

Parameters

TypeNameDefaultDescription
Integernin1Number of inputs
IntegernoutninNumber of outputs

Connectors

TypeNameDescription
input RealInputu[nin]Connector of Real input signals
output RealOutputy[nout]Connector of Real output signals

Modelica definition

block SignalRanker "Ranks output signals such that y[i] >= y[i+1]" extends Modelica.Blocks.Interfaces.MIMO(final nout=nin); protected Real t "Temporary variable"; algorithm y[:] := u[:]; for i in 1:nin loop for j in 1:nin - 1 loop if y[j] < y[j + 1] then t := y[j + 1]; y[j + 1] := y[j]; y[j] := t; end if; end for; end for; end SignalRanker;