Modelica.Thermal.FluidHeatFlow.Examples

Examples that demonstrate the usage of the FluidHeatFlow components

Information


This package contains test examples:

Main Authors:

Anton Haumer
Technical Consulting & Electrical Engineering
A-3423 St.Andrae-Woerdern, Austria
email: a.haumer@haumer.at

Dr.Christian Kral
Austrian Institute of Technology, AIT
Giefinggasse 2
A-1210 Vienna, Austria

Copyright © 1998-2013, Modelica Association, Anton Haumer and Austrian Institute of Technology, AIT.

This Modelica package is free software and the use is completely at your own risk; it can be redistributed and/or modified under the terms of the Modelica License 2. For license conditions (including the disclaimer of warranty) see Modelica.UsersGuide.ModelicaLicense2 or visit https://www.modelica.org/licenses/ModelicaLicense2.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

NameDescription
Modelica.Thermal.FluidHeatFlow.Examples.SimpleCooling SimpleCooling Example: simple cooling circuit
Modelica.Thermal.FluidHeatFlow.Examples.ParallelCooling ParallelCooling Example: cooling circuit with parallel branches
Modelica.Thermal.FluidHeatFlow.Examples.IndirectCooling IndirectCooling Example: indirect cooling circuit
Modelica.Thermal.FluidHeatFlow.Examples.PumpAndValve PumpAndValve Example: cooling circuit with pump and valve
Modelica.Thermal.FluidHeatFlow.Examples.PumpDropOut PumpDropOut Example: cooling circuit with drop out of pump
Modelica.Thermal.FluidHeatFlow.Examples.ParallelPumpDropOut ParallelPumpDropOut Example: cooling circuit with parallel branches and drop out of pump
Modelica.Thermal.FluidHeatFlow.Examples.OneMass OneMass Example: cooling of one hot mass
Modelica.Thermal.FluidHeatFlow.Examples.TwoMass TwoMass Example: cooling of two hot masses
Modelica.Thermal.FluidHeatFlow.Examples.Utilities Utilities Utility models for examples

Modelica.Thermal.FluidHeatFlow.Examples.SimpleCooling Modelica.Thermal.FluidHeatFlow.Examples.SimpleCooling

Example: simple cooling circuit

Information


1st test example: SimpleCooling

A prescribed heat source dissipates its heat through a thermal conductor to a coolant flow. The coolant flow is taken from an ambient and driven by a pump with prescribed mass flow.
Results:
output explanation formula actual steady-state value
dTSource Source over Ambient dtCoolant + dtToPipe 20 K
dTtoPipe Source over Coolant Losses / ThermalConductor.G 10 K
dTCoolant Coolant's temperature increase Losses * cp * massFlow 10 K

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mediumCooling medium
TAmbAmbient temperature [K]

Modelica.Thermal.FluidHeatFlow.Examples.ParallelCooling Modelica.Thermal.FluidHeatFlow.Examples.ParallelCooling

Example: cooling circuit with parallel branches

Information


2nd test example: ParallelCooling

Two prescribed heat sources dissipate their heat through thermal conductors to coolant flows. The coolant flow is taken from an ambient and driven by a pump with prescribed mass flow, then split into two coolant flows connected to the two heat sources, and afterwards merged. Splitting of coolant flows is determined by pressure drop characteristic of the two pipes.
Results:
output explanation formula actual steady-state value
dTSource1 Source1 over Ambient dTCoolant1 + dTtoPipe1 15 K
dTtoPipe1 Source1 over Coolant1 Losses1 / ThermalConductor1.G 5 K
dTCoolant1 Coolant's temperature increase Losses * cp * totalMassFlow/2 10 K
dTSource2 Source2 over Ambient dTCoolant2 + dTtoPipe2 30 K
dTtoPipe2 Source2 over Coolant2 Losses2 / ThermalConductor2.G 10 K
dTCoolant2 Coolant's temperature increase Losses * cp * totalMassFlow/2 20 K
dTmixedCoolant mixed Coolant's temperature increase (dTCoolant1+dTCoolant2)/2 15 K

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mediumCooling medium
TAmbAmbient temperature [K]

Modelica.Thermal.FluidHeatFlow.Examples.IndirectCooling Modelica.Thermal.FluidHeatFlow.Examples.IndirectCooling

Example: indirect cooling circuit

Information


3rd test example: IndirectCooling

A prescribed heat sources dissipates its heat through a thermal conductor to the inner coolant cycle. It is necessary to define the pressure level of the inner coolant cycle. The inner coolant cycle is coupled to the outer coolant flow through a thermal conductor.
Inner coolant's temperature rise near the source is the same as temperature drop near the cooler.
Results:
output explanation formula actual steady-state value
dTSource Source over Ambient dtouterCoolant + dtCooler + dTinnerCoolant + dtToPipe 40 K
dTtoPipe Source over inner Coolant Losses / ThermalConductor.G 10 K
dTinnerColant inner Coolant's temperature increase Losses * cp * innerMassFlow 10 K
dTCooler Cooler's temperature rise between inner and outer pipes Losses * (innerGc + outerGc) 10 K
dTouterColant outer Coolant's temperature increase Losses * cp * outerMassFlow 10 K

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
outerMediumOuter medium
innerMediumInner medium
TAmbAmbient temperature [K]

Modelica.Thermal.FluidHeatFlow.Examples.PumpAndValve Modelica.Thermal.FluidHeatFlow.Examples.PumpAndValve

Example: cooling circuit with pump and valve

Information


4th test example: PumpAndValve

The pump is running with half speed for 0.4 s, afterwards with full speed (using a ramp of 0.1 s).
The valve is half open for 0.9 s, afterwards full open (using a ramp of 0.1 s).
You may try to:

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mediumCooling medium
TAmbAmbient temperature [K]

Modelica.Thermal.FluidHeatFlow.Examples.PumpDropOut Modelica.Thermal.FluidHeatFlow.Examples.PumpDropOut

Example: cooling circuit with drop out of pump

Information


5th test example: PumpDropOut

Same as 1st test example, but with a drop out of the pump:
The pump is running for 0.2 s, then shut down (using a ramp of 0.2 s) for 0.2 s, then started again (using a ramp of 0.2 s).

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mediumCooling medium
TAmbAmbient temperature [K]

Modelica.Thermal.FluidHeatFlow.Examples.ParallelPumpDropOut Modelica.Thermal.FluidHeatFlow.Examples.ParallelPumpDropOut

Example: cooling circuit with parallel branches and drop out of pump

Information


6th test example: ParallelPumpDropOut

Same as 2nd test example, but with a drop out of the pump:
The pump is running for 0.2 s, then shut down (using a ramp of 0.2 s) for 0.2 s, then started again (using a ramp of 0.2 s).

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mediumCooling medium
TAmbAmbient temperature [K]

Modelica.Thermal.FluidHeatFlow.Examples.OneMass Modelica.Thermal.FluidHeatFlow.Examples.OneMass

Example: cooling of one hot mass

Information


7th test example: OneMass

A thermal capacity is coupled with a coolant flow. Different inital temperatures of thermal capacity and pipe's coolant get ambient's temperature, the time behaviour depending on coolant flow.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mediumCooling medium
TAmbAmbient temperature [K]
TMassInital temperature of mass [K]

Modelica.Thermal.FluidHeatFlow.Examples.TwoMass Modelica.Thermal.FluidHeatFlow.Examples.TwoMass

Example: cooling of two hot masses

Information


8th test example: TwoMass

Two thermal capacities are coupled with two parallel coolant flow. Different inital temperatures of thermal capacities and pipe's coolants get ambient's temperature, the time behaviour depending on coolant flow.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mediumCooling medium
TAmbAmbient temperature [K]
TMass1Inital temperature of mass1 [K]
TMass2Inital temperature of mass2 [K]

Automatically generated Mon Sep 23 17:21:08 2013.