Buildings.Examples.VAVReheat.Validation

Collection of validation models

Information

This package contains validation models for the classes in Buildings.Examples.VAVReheat.

Note that most validation models contain simple input data which may not be realistic, but for which the correct output can be obtained through an analytic solution. The examples plot various outputs, which have been verified against these solutions. These model outputs are stored as reference data and used for continuous validation whenever models in the library change.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Buildings.Examples.VAVReheat.Validation.Guideline36SteadyState Guideline36SteadyState Validation of detailed model that is at steady state with constant weather data

Buildings.Examples.VAVReheat.Validation.Guideline36SteadyState Buildings.Examples.VAVReheat.Validation.Guideline36SteadyState

Validation of detailed model that is at steady state with constant weather data

Buildings.Examples.VAVReheat.Validation.Guideline36SteadyState

Information

This model validates that the detailed model of multiple rooms and an HVAC system starts at and remains at exactly 20°C room air temperature if there is no solar radiation, constant outdoor conditions, no internal gains and no HVAC operation.

Extends from Buildings.Examples.VAVReheat.Guideline36 (Variable air volume flow system with terminal reheat and five thermal zones).

Parameters

TypeNameDefaultDescription
VolumeVRooCorAFloCor*flo.hRooRoom volume corridor [m3]
VolumeVRooSouAFloSou*flo.hRooRoom volume south [m3]
VolumeVRooNorAFloNor*flo.hRooRoom volume north [m3]
VolumeVRooEasAFloEas*flo.hRooRoom volume east [m3]
VolumeVRooWesAFloWes*flo.hRooRoom volume west [m3]
AreaAFloCorflo.cor.AFloFloor area corridor [m2]
AreaAFloSouflo.sou.AFloFloor area south [m2]
AreaAFloNorflo.nor.AFloFloor area north [m2]
AreaAFloEasflo.eas.AFloFloor area east [m2]
AreaAFloWesflo.wes.AFloFloor area west [m2]
AreaAFlo[numZon]{flo.cor.AFlo,flo.sou.AFlo,f...Floor area of each zone [m2]
MassFlowRatemCor_flow_nominal6*VRooCor*convDesign mass flow rate core [kg/s]
MassFlowRatemSou_flow_nominal6*VRooSou*convDesign mass flow rate perimeter 1 [kg/s]
MassFlowRatemEas_flow_nominal9*VRooEas*convDesign mass flow rate perimeter 2 [kg/s]
MassFlowRatemNor_flow_nominal6*VRooNor*convDesign mass flow rate perimeter 3 [kg/s]
MassFlowRatemWes_flow_nominal7*VRooWes*convDesign mass flow rate perimeter 4 [kg/s]
MassFlowRatem_flow_nominal0.7*(mCor_flow_nominal + mSo...Nominal mass flow rate [kg/s]
Anglelat41.98*3.14159/180Latitude [rad]
TemperatureTHeaOn293.15Heating setpoint during on [K]
TemperatureTHeaOff285.15Heating setpoint during off [K]
TemperatureTCooOn297.15Cooling setpoint during on [K]
TemperatureTCooOff303.15Cooling setpoint during off [K]
PressureDifferencedpBuiStaSet12Building static pressure [Pa]
RealyFanMin0.1Minimum fan speed
BooleanallowFlowReversaltrue= false to simplify equations, assuming, but not enforcing, no flow reversal
Booleanuse_windPressurefalseSet to true to enable wind pressure
VolumeFlowRateVPriSysMax_flowm_flow_nominal/1.2Maximum expected system primary airflow rate at design stage [m3/s]
VolumeFlowRateminZonPriFlo[numZon]{mCor_flow_nominal,mSou_flow...Minimum expected zone primary flow rate [m3/s]
TimesamplePeriod120Sample period of component, set to the same value as the trim and respond that process yPreSetReq [s]
PressureDifferencedpDisRetMax40Maximum return fan discharge static pressure setpoint [Pa]
Experimental (may be changed in future releases)
BooleansampleModelfalseSet to true to time-sample the model, which can give shorter simulation time if there is already time sampling in the system model

Connectors

TypeNameDescription
BusweaBusWeather Data Bus

Modelica definition

model Guideline36SteadyState "Validation of detailed model that is at steady state with constant weather data" extends Buildings.Examples.VAVReheat.Guideline36( weaDat( pAtmSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, ceiHeiSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, totSkyCovSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, opaSkyCovSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, TDryBulSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, TDewPoiSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, TBlaSkySou=Buildings.BoundaryConditions.Types.DataSource.Parameter, TBlaSky=293.15, relHumSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, winSpeSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, winDirSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, HInfHorSou=Buildings.BoundaryConditions.Types.DataSource.Parameter, HSou=Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HGloHor_HDifHor), use_windPressure=false, sampleModel=false, flo( gai(K=0*[0.4; 0.4; 0.2])), occSch( occupancy=3600*24*365*{1,2}, period=2*3600*24*365)); Buildings.Controls.OBC.CDL.Continuous.Sources.Constant solRad(k=0) "Solar radiation"; equation connect(weaDat.HDifHor_in, solRad.y); connect(weaDat.HGloHor_in, solRad.y); end Guideline36SteadyState;