Buildings.Fluid.HeatExchangers.Radiators.Examples
Collection of models that illustrate model use and test models
Information
This package contains examples for the use of models that can be found in Buildings.Fluid.HeatExchangers.Radiators.
Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).
Package Content
Name | Description |
---|---|
RadiatorEN442_2 | Test model for radiator |
Buildings.Fluid.HeatExchangers.Radiators.Examples.RadiatorEN442_2
Test model for radiator
Information
This test model compares the radiator model when used as a steady-state and a dynamic model.Extends from Modelica.Icons.Example (Icon for runnable examples).
Parameters
Type | Name | Default | Description |
---|---|---|---|
Temperature | TRoo | 20 + 273.15 | Room temperature [K] |
Power | Q_flow_nominal | 500 | Nominal power [W] |
Temperature | T_a_nominal | 313.15 | Radiator inlet temperature at nominal condition [K] |
Temperature | T_b_nominal | 303.15 | Radiator outlet temperature at nominal condition [K] |
MassFlowRate | m_flow_nominal | Q_flow_nominal/(T_a_nominal ... | Nominal mass flow rate [kg/s] |
PressureDifference | dp_nominal | 3000 | Pressure drop at m_flow_nominal [Pa] |
Modelica definition
model RadiatorEN442_2 "Test model for radiator"
extends Modelica.Icons.Example;
package Medium = Buildings.Media.Water "Medium model";
parameter Modelica.SIunits.Temperature TRoo=20 + 273.15 "Room temperature";
parameter Modelica.SIunits.Power Q_flow_nominal=500 "Nominal power";
parameter Modelica.SIunits.Temperature T_a_nominal=313.15
"Radiator inlet temperature at nominal condition";
parameter Modelica.SIunits.Temperature T_b_nominal=303.15
"Radiator outlet temperature at nominal condition";
parameter Modelica.SIunits.MassFlowRate m_flow_nominal=Q_flow_nominal/(
T_a_nominal - T_b_nominal)/Medium.cp_const "Nominal mass flow rate";
parameter Modelica.SIunits.PressureDifference dp_nominal=3000
"Pressure drop at m_flow_nominal";
Buildings.Fluid.Sources.Boundary_pT sou(
nPorts=2,
redeclare package Medium = Medium,
use_p_in=true,
T=T_a_nominal);
FixedResistances.PressureDrop res2(
redeclare package Medium = Medium,
m_flow_nominal=m_flow_nominal,
dp_nominal=dp_nominal);
FixedResistances.PressureDrop res1(
redeclare package Medium = Medium,
m_flow_nominal=m_flow_nominal,
dp_nominal=dp_nominal);
Buildings.Fluid.Sources.Boundary_pT sin(
redeclare package Medium = Medium,
nPorts=2,
p(displayUnit="Pa") = 300000,
T=T_b_nominal) "Sink";
Buildings.Fluid.HeatExchangers.Radiators.RadiatorEN442_2 rad1(
redeclare package Medium = Medium,
T_a_nominal=T_a_nominal,
T_b_nominal=T_b_nominal,
Q_flow_nominal=Q_flow_nominal,
TAir_nominal=TRoo,
energyDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial) "Radiator";
Buildings.Fluid.HeatExchangers.Radiators.RadiatorEN442_2 rad2(
redeclare package Medium = Medium,
energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState,
T_a_nominal=T_a_nominal,
T_b_nominal=T_b_nominal,
Q_flow_nominal=Q_flow_nominal,
TAir_nominal=TRoo) "Radiator";
Buildings.HeatTransfer.Sources.FixedTemperature TBCCon1(T=TRoo);
Buildings.HeatTransfer.Sources.FixedTemperature TBCCon2(T=TRoo);
Modelica.Blocks.Sources.Step step(
startTime=3600,
offset=300000 + dp_nominal,
height=-dp_nominal);
Buildings.HeatTransfer.Sources.FixedTemperature TBCRad2(T=TRoo);
Buildings.HeatTransfer.Sources.FixedTemperature TBCRad1(T=TRoo);
equation
connect(sou.ports[1], rad1.port_a);
connect(sou.ports[2], rad2.port_a);
connect(rad1.port_b, res1.port_a);
connect(rad2.port_b, res2.port_a);
connect(res1.port_b, sin.ports[1]);
connect(res2.port_b, sin.ports[2]);
connect(step.y, sou.p_in);
connect(TBCRad2.port, rad2.heatPortRad);
connect(TBCRad1.port, rad1.heatPortRad);
connect(TBCCon2.port, rad2.heatPortCon);
connect(TBCCon1.port, rad1.heatPortCon);
end RadiatorEN442_2;