Package with moist air model that decouples pressure and temperature
This medium package models moist air using a gas law in which pressure and temperature are independent, which often leads to significantly faster and more robust computations. The specific heat capacities at constant pressure and at constant volume are constant. The air is assumed to be not saturated.
This medium uses the gas law
ρ/ρstp = p/pstp,
where pstd and ρstp are constant reference temperature and density, rathern than the ideal gas law
ρ = p ⁄(R T),
where R is the gas constant and T is the temperature.
This formulation often leads to smaller systems of nonlinear equations because equations for pressure and temperature are decoupled. Therefore, if air inside a control volume such as room air is heated, it does not increase its specific volume. Consequently, merely heating or cooling a control volume does not affect the air flow calculations in a duct network that may be connected to that volume. Note that multizone air exchange simulation in which buoyancy drives the air flow is still possible as the models in Buildings.Airflow.Multizone compute the mass density using the function Buildings.Utilities.Psychrometrics.Functions.density_pTX in which density is a function of temperature.
Note that models in this package implement the equation for the internal energy as
u = h - pstp ⁄ ρstp,
where u is the internal energy per unit mass, h is the enthalpy per unit mass, pstp is the static pressure and ρstp is the mass density at standard pressure and temperature. The reason for this implementation is that in general,
h = u + p v,
from which follows that
u = h - p v = h - p ⁄ ρ = h - pstp ⁄ ρstd,
because p ⁄ ρ = pstp ⁄ ρstp in this medium model.
The enthalpy is computed using the convention that h=0 if T=0 °C and no water vapor is present.
Extends from Modelica.Media.Interfaces.PartialCondensingGases (Base class for mixtures of condensing and non-condensing gases), Modelica.Icons.Package (Icon for standard packages).
Name | Description |
---|---|
Water=1 | Index of water (in substanceNames, massFractions X, etc.) |
Air=2 | Index of air (in substanceNames, massFractions X, etc.) |
pStp=reference_p | Pressure for which fluid density is defined |
dStp=1.2 | Fluid density at pressure pStp |
ThermodynamicState | ThermodynamicState record for moist air |
BaseProperties | Base properties |
density | Gas density |
dynamicViscosity | Return the dynamic viscosity of dry air |
enthalpyOfCondensingGas | Enthalpy of steam per unit mass of steam |
enthalpyOfGas | Enthalpy of gas mixture per unit mass of gas mixture |
enthalpyOfLiquid | Enthalpy of liquid (per unit mass of liquid) which is linear in the temperature |
enthalpyOfNonCondensingGas | Enthalpy of non-condensing gas per unit mass of steam |
enthalpyOfVaporization | Enthalpy of vaporization of water |
gasConstant | Return ideal gas constant as a function from thermodynamic state, only valid for phi<1 |
pressure | Returns pressure of ideal gas as a function of the thermodynamic state record |
isobaricExpansionCoefficient | Isobaric expansion coefficient beta |
isothermalCompressibility | Isothermal compressibility factor |
saturationPressure | Saturation curve valid for 223.16 <= T <= 373.16 (and slightly outside with less accuracy) |
specificEntropy | Return the specific entropy, only valid for phi<1 |
density_derp_T | Return the partial derivative of density with respect to pressure at constant temperature |
density_derT_p | Return the partial derivative of density with respect to temperature at constant pressure |
density_derX | Return the partial derivative of density with respect to mass fractions at constant pressure and temperature |
specificHeatCapacityCp | Specific heat capacity of gas mixture at constant pressure |
specificHeatCapacityCv | Specific heat capacity of gas mixture at constant volume |
setState_dTX | Return thermodynamic state as function of density d, temperature T and composition X |
setState_phX | Return thermodynamic state as function of pressure p, specific enthalpy h and composition X |
setState_pTX | Return thermodynamic state as function of p, T and composition X or Xi |
setState_psX | Return the thermodynamic state as function of p, s and composition X or Xi |
specificEnthalpy | Compute specific enthalpy from pressure, temperature and mass fraction |
specificEnthalpy_pTX | Specific enthalpy |
specificGibbsEnergy | Specific Gibbs energy |
specificHelmholtzEnergy | Specific Helmholtz energy |
isentropicEnthalpy | Return the isentropic enthalpy |
specificInternalEnergy | Specific internal energy |
temperature | Return temperature of ideal gas as a function of the thermodynamic state record |
molarMass | Return the molar mass |
temperature_phX | Compute temperature from specific enthalpy and mass fraction |
thermalConductivity | Thermal conductivity of dry air as a polynomial in the temperature |
GasProperties | Coefficient data record for properties of perfect gases |
dryair | Dry air properties |
steam | Steam properties |
k_mair=steam.MM/dryair.MM | Ratio of molar weights |
MMX={steam.MM,dryair.MM} | Molar masses of components |
h_fg=Buildings.Utilities.Psychrometrics.Constants.h_fg | Latent heat of evaporation of water |
cpWatLiq=Buildings.Utilities.Psychrometrics.Constants.cpWatLiq | Specific heat capacity of liquid water |
der_enthalpyOfLiquid | Temperature derivative of enthalpy of liquid per unit mass of liquid |
der_enthalpyOfCondensingGas | Derivative of enthalpy of steam per unit mass of steam |
enthalpyOfDryAir | Enthalpy of dry air per unit mass of dry air |
der_enthalpyOfDryAir | Derivative of enthalpy of dry air per unit mass of dry air |
der_enthalpyOfNonCondensingGas | Derivative of enthalpy of non-condensing gas per unit mass of steam |
der_specificHeatCapacityCp | Derivative of specific heat capacity of gas mixture at constant pressure |
der_specificHeatCapacityCv | Derivative of specific heat capacity of gas mixture at constant volume |
Inherited | |
fluidConstants | Constant data for the fluid |
moleToMassFractions | Return mass fractions X from mole fractions |
massToMoleFractions | Return mole fractions from mass fractions X |
ThermoStates | Enumeration type for independent variables |
mediumName="unusablePartialMedium" | Name of the medium |
substanceNames={mediumName} | Names of the mixture substances. Set substanceNames={mediumName} if only one substance. |
extraPropertiesNames=fill("", 0) | Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused |
singleState | = true, if u and d are not a function of pressure |
reducedX=true | = true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details) |
fixedX=false | = true if medium contains the equation X = reference_X |
reference_p=101325 | Reference pressure of Medium: default 1 atmosphere |
reference_T=298.15 | Reference temperature of Medium: default 25 deg Celsius |
reference_X=fill(1/nX, nX) | Default mass fractions of medium |
p_default=101325 | Default value for pressure of medium (for initialization) |
T_default=Modelica.SIunits.Conversions.from_degC(20) | Default value for temperature of medium (for initialization) |
h_default=specificEnthalpy_pTX(p_default, T_default, X_default) | Default value for specific enthalpy of medium (for initialization) |
X_default=reference_X | Default value for mass fractions of medium (for initialization) |
nS=size(substanceNames, 1) | Number of substances |
nX=nS | Number of mass fractions |
nXi=if fixedX then 0 else if reducedX then nS - 1 else nS | Number of structurally independent mass fractions (see docu for details) |
nC=size(extraPropertiesNames, 1) | Number of extra (outside of standard mass-balance) transported properties |
C_nominal=1.0e-6*ones(nC) | Default for the nominal values for the extra properties |
FluidConstants | Critical, triple, molecular and other standard data of fluid |
setSmoothState | Return thermodynamic state so that it smoothly approximates: if x > 0 then state_a else state_b |
prandtlNumber | Return the Prandtl number |
heatCapacity_cp | Alias for deprecated name |
heatCapacity_cv | Alias for deprecated name |
isentropicExponent | Return isentropic exponent |
velocityOfSound | Return velocity of sound |
beta | Alias for isobaricExpansionCoefficient for user convenience |
kappa | Alias of isothermalCompressibility for user convenience |
density_derp_h | Return density derivative w.r.t. pressure at const specific enthalpy |
density_derh_p | Return density derivative w.r.t. specific enthalpy at constant pressure |
specificEntropy_pTX | Return specific enthalpy from p, T, and X or Xi |
density_pTX | Return density from p, T, and X or Xi |
density_phX | Return density from p, h, and X or Xi |
temperature_psX | Return temperature from p,s, and X or Xi |
density_psX | Return density from p, s, and X or Xi |
specificEnthalpy_psX | Return specific enthalpy from p, s, and X or Xi |
MassFlowRate | Type for mass flow rate with medium specific attributes |
AbsolutePressure | Type for absolute pressure with medium specific attributes |
Density | Type for density with medium specific attributes |
DynamicViscosity | Type for dynamic viscosity with medium specific attributes |
EnthalpyFlowRate | Type for enthalpy flow rate with medium specific attributes |
MassFraction | Type for mass fraction with medium specific attributes |
MoleFraction | Type for mole fraction with medium specific attributes |
MolarMass | Type for molar mass with medium specific attributes |
MolarVolume | Type for molar volume with medium specific attributes |
IsentropicExponent | Type for isentropic exponent with medium specific attributes |
SpecificEnergy | Type for specific energy with medium specific attributes |
SpecificInternalEnergy | Type for specific internal energy with medium specific attributes |
SpecificEnthalpy | Type for specific enthalpy with medium specific attributes |
SpecificEntropy | Type for specific entropy with medium specific attributes |
SpecificHeatCapacity | Type for specific heat capacity with medium specific attributes |
SurfaceTension | Type for surface tension with medium specific attributes |
Temperature | Type for temperature with medium specific attributes |
ThermalConductivity | Type for thermal conductivity with medium specific attributes |
PrandtlNumber | Type for Prandtl number with medium specific attributes |
VelocityOfSound | Type for velocity of sound with medium specific attributes |
ExtraProperty | Type for unspecified, mass-specific property transported by flow |
CumulativeExtraProperty | Type for conserved integral of unspecified, mass specific property |
ExtraPropertyFlowRate | Type for flow rate of unspecified, mass-specific property |
IsobaricExpansionCoefficient | Type for isobaric expansion coefficient with medium specific attributes |
DipoleMoment | Type for dipole moment with medium specific attributes |
DerDensityByPressure | Type for partial derivative of density with respect to pressure with medium specific attributes |
DerDensityByEnthalpy | Type for partial derivative of density with respect to enthalpy with medium specific attributes |
DerEnthalpyByPressure | Type for partial derivative of enthalpy with respect to pressure with medium specific attributes |
DerDensityByTemperature | Type for partial derivative of density with respect to temperature with medium specific attributes |
DerTemperatureByPressure | Type for partial derivative of temperature with respect to pressure with medium specific attributes |
SaturationProperties | Saturation properties of two phase medium |
FluidLimits | Validity limits for fluid model |
FixedPhase | Phase of the fluid: 1 for 1-phase, 2 for two-phase, 0 for not known, e.g., interactive use |
Basic | The most basic version of a record used in several degrees of detail |
IdealGas | The ideal gas version of a record used in several degrees of detail |
TwoPhase | The two phase fluid version of a record used in several degrees of detail |
constant Integer Water=1 "Index of water (in substanceNames, massFractions X, etc.)";
constant Integer Air=2 "Index of air (in substanceNames, massFractions X, etc.)";
constant AbsolutePressure pStp = reference_p "Pressure for which fluid density is defined";
constant Density dStp = 1.2 "Fluid density at pressure pStp";
constant GasProperties dryair( R = Modelica.Media.IdealGases.Common.SingleGasesData.Air.R, MM = Modelica.Media.IdealGases.Common.SingleGasesData.Air.MM, cp = Buildings.Utilities.Psychrometrics.Constants.cpAir, cv = Buildings.Utilities.Psychrometrics.Constants.cpAir -Modelica.Media.IdealGases.Common.SingleGasesData.Air.R) "Dry air properties";
constant GasProperties steam( R = Modelica.Media.IdealGases.Common.SingleGasesData.H2O.R, MM = Modelica.Media.IdealGases.Common.SingleGasesData.H2O.MM, cp = Buildings.Utilities.Psychrometrics.Constants.cpSte, cv = Buildings.Utilities.Psychrometrics.Constants.cpSte -Modelica.Media.IdealGases.Common.SingleGasesData.H2O.R) "Steam properties";
constant Real k_mair = steam.MM/dryair.MM "Ratio of molar weights";
constant Modelica.SIunits.MolarMass[2] MMX={steam.MM,dryair.MM} "Molar masses of components";
constant Modelica.SIunits.SpecificEnergy h_fg= Buildings.Utilities.Psychrometrics.Constants.h_fg "Latent heat of evaporation of water";
constant Modelica.SIunits.SpecificHeatCapacity cpWatLiq= Buildings.Utilities.Psychrometrics.Constants.cpWatLiq "Specific heat capacity of liquid water";
ThermodynamicState record for moist air
Extends from (Thermodynamic state variables).
Base properties
Extends from (Base properties (p, d, T, h, u, R, MM and, if applicable, X and Xi) of a medium).
Type | Name | Default | Description |
---|---|---|---|
Boolean | standardOrderComponents | true | If true, and reducedX = true, the last element of X will be computed from the other ones |
Advanced | |||
Boolean | preferredMediumStates | false | = true if StateSelect.prefer shall be used for the independent property variables of the medium |
Gas density
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state |
Type | Name | Description |
---|---|---|
Density | d | Density [kg/m3] |
Return the dynamic viscosity of dry air
This function returns the dynamic viscosity.
The function is based on the 5th order polynomial of Modelica.Media.Air.MoistAir.dynamicViscosity. However, for the typical range of temperatures encountered in building applications, a linear function sufficies. This implementation is therefore the above 5th order polynomial, linearized around 20°C. The relative error of this linearization is 0.4% at -20°C, and less then 0.2% between -5°C and +50°C.
Extends from (Return dynamic viscosity).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
DynamicViscosity | eta | Dynamic viscosity [Pa.s] |
Enthalpy of steam per unit mass of steam
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | steam enthalpy [J/kg] |
Enthalpy of gas mixture per unit mass of gas mixture
Extends from (Return enthalpy of non-condensing gas mixture).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] | |
MassFraction | X[:] | Vector of mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy [J/kg] |
Enthalpy of liquid (per unit mass of liquid) which is linear in the temperature
Extends from (Return liquid enthalpy of condensing fluid).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Liquid enthalpy [J/kg] |
Enthalpy of non-condensing gas per unit mass of steam
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | enthalpy [J/kg] |
Enthalpy of vaporization of water
Extends from (Return vaporization enthalpy of condensing fluid).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | r0 | Vaporization enthalpy [J/kg] |
Return ideal gas constant as a function from thermodynamic state, only valid for phi<1
Extends from (Return the gas constant of the mixture (also for liquids)).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | R | Mixture gas constant [J/(kg.K)] |
Returns pressure of ideal gas as a function of the thermodynamic state record
Extends from (Return pressure).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
AbsolutePressure | p | Pressure [Pa] |
Isobaric expansion coefficient beta
This function returns the isobaric expansion coefficient at constant pressure, which is zero for this medium. The isobaric expansion coefficient at constant pressure is
βp = - 1 ⁄ v (∂ v ⁄ ∂ T)p = 0,
where v is the specific volume, T is the temperature and p is the pressure.
Extends from (Return overall the isobaric expansion coefficient beta).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
IsobaricExpansionCoefficient | beta | Isobaric expansion coefficient [1/K] |
Isothermal compressibility factor
This function returns the isothermal compressibility coefficient. The isothermal compressibility is
κT = -1 ⁄ v (∂ v ⁄ ∂ p)T = -1 ⁄ p,
where v is the specific volume, T is the temperature and p is the pressure.
Extends from (Return overall the isothermal compressibility factor).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
IsothermalCompressibility | kappa | Isothermal compressibility [1/Pa] |
Saturation curve valid for 223.16 <= T <= 373.16 (and slightly outside with less accuracy)
Extends from (Return saturation pressure of condensing fluid).
Type | Name | Default | Description |
---|---|---|---|
Temperature | Tsat | Saturation temperature [K] |
Type | Name | Description |
---|---|---|
AbsolutePressure | psat | Saturation pressure [Pa] |
Return the specific entropy, only valid for phi<1
This function computes the specific entropy.
The specific entropy of the mixture is obtained from
s = ss + sm,
where ss is the entropy change due to the state change (relative to the reference temperature) and sm is the entropy change due to mixing of the dry air and water vapor.
The entropy change due to change in state is obtained from
ss = cv ln(T/T0) + R ln(v/v0)
= cv ln(T/T0) + R ln(ρ0/ρ)
If we assume ρ = p0/(R T), and because cp = cv + R, we can write
ss = cv ln(T/T0) + R ln(T/T0)
=cp ln(T/T0).
Next, the entropy of mixing is obtained from a reversible isothermal expansion process. Hence,
sm = -R ∑i( Xi ⁄ Mi ln(Yi p/p0)),
where R is the gas constant, X is the mass fraction, M is the molar mass, and Y is the mole fraction.
To obtain the state for a given pressure, entropy and mass fraction, use Buildings.Media.Air.setState_psX.
This function is only valid for a relative humidity below 100%.
Extends from (Return specific entropy).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEntropy | s | Specific entropy [J/(kg.K)] |
Return the partial derivative of density with respect to pressure at constant temperature
This function returns the partial derivative of density with respect to pressure at constant temperature.
Extends from (Return density derivative w.r.t. pressure at const temperature).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
DerDensityByPressure | ddpT | Density derivative w.r.t. pressure [s2/m2] |
Return the partial derivative of density with respect to temperature at constant pressure
This function computes the derivative of density with respect to temperature at constant pressure.
Extends from (Return density derivative w.r.t. temperature at constant pressure).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
DerDensityByTemperature | ddTp | Density derivative w.r.t. temperature [kg/(m3.K)] |
Return the partial derivative of density with respect to mass fractions at constant pressure and temperature
This function returns the partial derivative of density with respect to mass fraction. This value is zero because in this medium, density is proportional to pressure, but independent of the species concentration.
Extends from (Return density derivative w.r.t. mass fraction).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
Density | dddX[nX] | Derivative of density w.r.t. mass fraction [kg/m3] |
Specific heat capacity of gas mixture at constant pressure
Extends from (Return specific heat capacity at constant pressure).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cp | Specific heat capacity at constant pressure [J/(kg.K)] |
Specific heat capacity of gas mixture at constant volume
Extends from (Return specific heat capacity at constant volume).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cv | Specific heat capacity at constant volume [J/(kg.K)] |
Return thermodynamic state as function of density d, temperature T and composition X
The thermodynamic state record
is computed from density d
, temperature T
and composition X
.
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Density | d | Density [kg/m3] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Thermodynamic state |
Return thermodynamic state as function of pressure p, specific enthalpy h and composition X
Extends from (Return thermodynamic state as function of p, h and composition X or Xi).
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Return thermodynamic state as function of p, T and composition X or Xi
Extends from (Return thermodynamic state as function of p, T and composition X or Xi).
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Return the thermodynamic state as function of p, s and composition X or Xi
This function returns the thermodynamic state based on pressure, specific entropy and mass fraction.
The state is computed by symbolically solving Buildings.Media.Air.specificEntropy for temperature.
Extends from (Return thermodynamic state as function of p, s and composition X or Xi).
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEntropy | s | Specific entropy [J/(kg.K)] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Compute specific enthalpy from pressure, temperature and mass fraction
Extends from (Return specific enthalpy).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy [J/kg] |
Specific enthalpy
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | Mass fractions of moist air [1] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy at p, T, X [J/kg] |
Specific Gibbs energy
Extends from (Return specific Gibbs energy).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | g | Specific Gibbs energy [J/kg] |
Specific Helmholtz energy
Extends from (Return specific Helmholtz energy).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | f | Specific Helmholtz energy [J/kg] |
Return the isentropic enthalpy
This function computes the specific enthalpy for
an isentropic state change from the temperature
that corresponds to the state refState
to reference_T
.
Extends from (Return isentropic enthalpy).
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p_downstream | Downstream pressure [Pa] | |
ThermodynamicState | refState | Reference state for entropy |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h_is | Isentropic enthalpy [J/kg] |
Specific internal energy
Extends from Modelica.Icons.Function (Icon for functions), (Return specific internal energy).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | u | Specific internal energy [J/kg] |
Return temperature of ideal gas as a function of the thermodynamic state record
Extends from (Return temperature).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
Return the molar mass
This function returns the molar mass.
Extends from (Return the molar mass of the medium).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
MolarMass | MM | Mixture molar mass [kg/mol] |
Compute temperature from specific enthalpy and mass fraction
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | specific enthalpy [J/kg] | |
MassFraction | X[:] | mass fractions of composition [kg/kg] |
Type | Name | Description |
---|---|---|
Temperature | T | temperature [K] |
Thermal conductivity of dry air as a polynomial in the temperature
Extends from (Return thermal conductivity).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
ThermalConductivity | lambda | Thermal conductivity [W/(m.K)] |
Coefficient data record for properties of perfect gases
This data record contains the coefficients for perfect gases.
Extends from Modelica.Icons.Record (Icon for records).
Temperature derivative of enthalpy of liquid per unit mass of liquid
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] | |
Real | der_T | Temperature derivative |
Type | Name | Description |
---|---|---|
Real | der_h | Derivative of liquid enthalpy |
Derivative of enthalpy of steam per unit mass of steam
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] | |
Real | der_T | Temperature derivative |
Type | Name | Description |
---|---|---|
Real | der_h | Derivative of steam enthalpy |
Enthalpy of dry air per unit mass of dry air
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Dry air enthalpy [J/kg] |
Derivative of enthalpy of dry air per unit mass of dry air
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] | |
Real | der_T | Temperature derivative |
Type | Name | Description |
---|---|---|
Real | der_h | Derivative of dry air enthalpy |
Derivative of enthalpy of non-condensing gas per unit mass of steam
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | Temperature [K] | |
Real | der_T | Temperature derivative |
Type | Name | Description |
---|---|---|
Real | der_h | Derivative of steam enthalpy |
Derivative of specific heat capacity of gas mixture at constant pressure
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state | |
ThermodynamicState | der_state | Derivative of thermodynamic state |
Type | Name | Description |
---|---|---|
Real | der_cp | Derivative of specific heat capacity [J/(kg.K.s)] |
Derivative of specific heat capacity of gas mixture at constant volume
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state | |
ThermodynamicState | der_state | Derivative of thermodynamic state |
Type | Name | Description |
---|---|---|
Real | der_cv | Derivative of specific heat capacity [J/(kg.K.s)] |