LBL logo

Buildings.Fluid.Movers.Examples

Collection of models that illustrate model use and test models

Information

This package contains examples for the use of models that can be found in Buildings.Fluid.Movers.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Buildings.Fluid.Movers.Examples.ClosedLoop_y ClosedLoop_y Flow machine with feedback control
Buildings.Fluid.Movers.Examples.PumpsParallel PumpsParallel Two flow machines in parallel
Buildings.Fluid.Movers.Examples.PumpsSeries PumpsSeries Two flow machines in series
Buildings.Fluid.Movers.Examples.SpeedControlled_y_pumpCurves SpeedControlled_y_pumpCurves Pumps that illustrates the use of the pump curves

Buildings.Fluid.Movers.Examples.ClosedLoop_y Buildings.Fluid.Movers.Examples.ClosedLoop_y

Flow machine with feedback control

Buildings.Fluid.Movers.Examples.ClosedLoop_y

Information

This example demonstrates the use of a fan with closed loop control. The fan is controlled to track a required mass flow rate.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
MassFlowRatem_flow_nominal0.1Nominal mass flow rate [kg/s]
Pressuredp_nominal500Nominal pressure difference [Pa]

Modelica definition

model ClosedLoop_y "Flow machine with feedback control" extends Modelica.Icons.Example; package Medium = Buildings.Media.Air; parameter Modelica.SIunits.MassFlowRate m_flow_nominal= 0.1 "Nominal mass flow rate"; parameter Modelica.SIunits.Pressure dp_nominal = 500 "Nominal pressure difference"; Modelica.Blocks.Sources.Pulse y( offset=0.25, startTime=0, amplitude=0.5, period=15*60) "Input signal"; Buildings.Fluid.Sources.Boundary_pT sou( redeclare package Medium = Medium, use_p_in=false, p=101325, T=293.15, nPorts=2); FixedResistances.FixedResistanceDpM dp1( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dp_nominal=dp_nominal/2) "Pressure drop"; Buildings.Fluid.FixedResistances.FixedResistanceDpM dp2( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dp_nominal=dp_nominal/2) "Pressure drop"; Buildings.Fluid.Movers.SpeedControlled_y fan( redeclare package Medium = Medium, per(pressure(V_flow={0,m_flow_nominal,2*m_flow_nominal}/1.2, dp={2*dp_nominal,dp_nominal,0})), energyDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial) "Fan"; Buildings.Fluid.Sensors.MassFlowRate senMasFlo(redeclare package Medium = Medium); Buildings.Controls.Continuous.LimPID conPID( Td=1, controllerType=Modelica.Blocks.Types.SimpleController.PI, k=0.5, Ti=15); Modelica.Blocks.Math.Gain gain1(k=1/m_flow_nominal); equation connect(sou.ports[1], senMasFlo.port_a); connect(senMasFlo.port_b, dp1.port_a); connect(dp1.port_b, fan.port_a); connect(fan.port_b, dp2.port_a); connect(dp2.port_b, sou.ports[2]); connect(senMasFlo.m_flow, gain1.u); connect(gain1.y, conPID.u_m); connect(y.y, conPID.u_s); connect(conPID.y, fan.y); end ClosedLoop_y;

Buildings.Fluid.Movers.Examples.PumpsParallel Buildings.Fluid.Movers.Examples.PumpsParallel

Two flow machines in parallel

Buildings.Fluid.Movers.Examples.PumpsParallel

Information

This example tests the configuration of two flow machines that are installed in parallel. Both flow machines start with full speed. At t=150 second, the speed of the flow machine on the top is reduced to zero. As its speed is reduced, the mass flow rate changes its direction in such a way that the flow machine at the top has reverse flow.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
MassFlowRatem_flow_nominal1Nominal mass flow rate [kg/s]
Densityrho_nominal1000Density, used to compute fluid mass [kg/m3]

Modelica definition

model PumpsParallel "Two flow machines in parallel" extends Modelica.Icons.Example; package Medium = Buildings.Media.Water "Medium model"; parameter Modelica.SIunits.MassFlowRate m_flow_nominal= 1 "Nominal mass flow rate"; parameter Modelica.SIunits.Density rho_nominal=1000 "Density, used to compute fluid mass"; Buildings.Fluid.FixedResistances.FixedResistanceDpM dpIn1( redeclare package Medium = Medium, dp_nominal=1000, m_flow_nominal=0.5*m_flow_nominal) "Pressure drop"; Buildings.Fluid.Movers.SpeedControlled_y floMac1( redeclare package Medium = Medium, per(pressure(V_flow={0, m_flow_nominal/rho_nominal}, dp={2*4*1000, 0})), energyDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial) "Model of a flow machine"; Buildings.Fluid.FixedResistances.FixedResistanceDpM dpOut1( redeclare package Medium = Medium, dp_nominal=1000, m_flow_nominal=0.5*m_flow_nominal) "Pressure drop"; Buildings.Fluid.Sources.Boundary_pT sou( redeclare package Medium = Medium, use_p_in=false, nPorts=2, T=293.15); Buildings.Fluid.FixedResistances.FixedResistanceDpM dpIn( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dp_nominal=1000) "Pressure drop"; Buildings.Fluid.FixedResistances.FixedResistanceDpM dpOut3( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dp_nominal=1000) "Pressure drop"; Modelica.Blocks.Sources.Constant const2(k=1) "Constant source"; Buildings.Fluid.FixedResistances.FixedResistanceDpM dpIn2( redeclare package Medium = Medium, dp_nominal=1000, m_flow_nominal=0.5*m_flow_nominal) "Pressure drop"; Buildings.Fluid.Movers.SpeedControlled_y floMac2( redeclare package Medium = Medium, per(pressure(V_flow={0, m_flow_nominal/rho_nominal}, dp={2*4*1000, 0})), energyDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial) "Model of a flow machine"; Buildings.Fluid.FixedResistances.FixedResistanceDpM dpOut2( redeclare package Medium = Medium, dp_nominal=1000, m_flow_nominal=0.5*m_flow_nominal) "Pressure drop"; Modelica.Blocks.Sources.Step const1( height=-1, offset=1, startTime=150); equation connect(dpIn1.port_b, floMac1.port_a); connect(floMac1.port_b, dpOut1.port_a); connect(sou.ports[1], dpIn.port_a); connect(dpIn.port_b, dpIn1.port_a); connect(dpOut1.port_b, dpOut3.port_a); connect(dpOut3.port_b, sou.ports[2]); connect(dpIn2.port_b,floMac2. port_a); connect(floMac2.port_b,dpOut2. port_a); connect(const2.y, floMac2.y); connect(dpIn.port_b, dpIn2.port_a); connect(dpOut2.port_b, dpOut3.port_a); connect(const1.y, floMac1.y); end PumpsParallel;

Buildings.Fluid.Movers.Examples.PumpsSeries Buildings.Fluid.Movers.Examples.PumpsSeries

Two flow machines in series

Buildings.Fluid.Movers.Examples.PumpsSeries

Information

This example tests the configuration of two flow machines that are installed in series. Both flow machines start with full speed. At t=150 seconds, the speed of the flow machine on the left is reduced to zero. As its speed is reduced, the mass flow rate is reduced. Note that even at zero input, the mass flow rate is non-zero, but the pressure drop of the pump floMac1.dp is positive, which means that this pump has a flow resistance. However, flowMac2.dp is always negative, as this pump has a constant control input of 1.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
MassFlowRatem_flow_nominal1Nominal mass flow rate [kg/s]
ThermodynamicStatestate_startMedium.setState_pTX(T=Medium...Start state
Densityrho_nominalMedium.density(state_start)Density, used to compute fluid mass [kg/m3]

Modelica definition

model PumpsSeries "Two flow machines in series" extends Modelica.Icons.Example; package Medium = Buildings.Media.Water; parameter Modelica.SIunits.MassFlowRate m_flow_nominal= 1 "Nominal mass flow rate"; Buildings.Fluid.Movers.SpeedControlled_y floMac1( redeclare package Medium = Medium, per(pressure(V_flow={0, m_flow_nominal/1000}, dp={2*4*1000, 0})), dynamicBalance=false) "Model of a flow machine"; Buildings.Fluid.Sources.Boundary_pT sou( redeclare package Medium = Medium, use_p_in=false, p(displayUnit="Pa") = 300000, T=293.15, nPorts=1); Modelica.Blocks.Sources.Constant const2(k=1); parameter Medium.ThermodynamicState state_start = Medium.setState_pTX( T=Medium.T_default, p=Medium.p_default, X=Medium.X_default) "Start state"; parameter Modelica.SIunits.Density rho_nominal=Medium.density( state_start) "Density, used to compute fluid mass"; Buildings.Fluid.Movers.SpeedControlled_y floMac2( redeclare package Medium = Medium, per(pressure(V_flow={0, m_flow_nominal/1000}, dp={2*4*1000, 0})), dynamicBalance=false) "Model of a flow machine"; Modelica.Blocks.Sources.Step const1( height=-1, offset=1, startTime=150); Buildings.Fluid.Sources.Boundary_pT sou1( redeclare package Medium = Medium, use_p_in=false, p(displayUnit="Pa") = 300000 + 4000, T=293.15, nPorts=1); equation connect(const2.y, floMac2.y); connect(const1.y, floMac1.y); connect(floMac1.port_b, floMac2.port_a); connect(sou.ports[1], floMac1.port_a); connect(floMac2.port_b, sou1.ports[1]); end PumpsSeries;

Buildings.Fluid.Movers.Examples.SpeedControlled_y_pumpCurves Buildings.Fluid.Movers.Examples.SpeedControlled_y_pumpCurves

Pumps that illustrates the use of the pump curves

Buildings.Fluid.Movers.Examples.SpeedControlled_y_pumpCurves

Information

This example demonstrates how the pump curves changes for different (constant) input signal y. If y ≥ delta = 0.05, the pump curves are polynomials. For y < delta = 0.05, the pump curves convert to linear functions to avoid a singularity at the origin.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
MassFlowRatem_flow_nominal0.5Nominal mass flow rate [kg/s]
Pressuredp_nominal10000Nominal pressure [Pa]

Modelica definition

model SpeedControlled_y_pumpCurves "Pumps that illustrates the use of the pump curves" extends Modelica.Icons.Example; package Medium = Buildings.Media.Water "Medium model"; parameter Modelica.SIunits.MassFlowRate m_flow_nominal = 0.5 "Nominal mass flow rate"; parameter Modelica.SIunits.Pressure dp_nominal = 10000 "Nominal pressure"; model pumpModel = Buildings.Fluid.Movers.SpeedControlled_y ( redeclare package Medium = Medium, energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState, dynamicBalance=false, per(pressure(V_flow=2/1000*m_flow_nominal*{0.2, 0.4, 0.6, 0.8}, dp=dp_nominal*{0.9, 0.85, 0.6, 0.2}))) "Declaration of pump model"; pumpModel pum(filteredSpeed=false) "Pump"; pumpModel pum1(filteredSpeed=false) "Pump"; pumpModel pum2(filteredSpeed=false) "Pump"; pumpModel pum3(filteredSpeed=false) "Pump"; Modelica.Blocks.Sources.Ramp y( offset=1, duration=0.5, startTime=0.25, height=-1) "Input signal"; Buildings.Fluid.Sources.Boundary_pT sou( redeclare package Medium = Medium, use_p_in=false, p=300000, T=293.15, nPorts=4); Buildings.Fluid.Sources.Boundary_pT sou1( redeclare package Medium = Medium, use_p_in=false, nPorts=4, p(displayUnit="Pa") = 300000, T=293.15); Buildings.Fluid.Actuators.Valves.TwoWayLinear dp1( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dpValve_nominal=0.01*dp_nominal, filteredOpening=false) "Pressure drop"; Modelica.Blocks.Sources.Constant y1(k=1) "Input signal"; Buildings.Fluid.Actuators.Valves.TwoWayLinear dp2( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dpValve_nominal=0.01*dp_nominal, filteredOpening=false) "Pressure drop"; Modelica.Blocks.Sources.Constant y2(k=0.5) "Input signal"; Buildings.Fluid.Actuators.Valves.TwoWayLinear dp3( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dpValve_nominal=0.01*dp_nominal, filteredOpening=false) "Pressure drop"; Modelica.Blocks.Sources.Constant y3(k=0.05) "Input signal"; Buildings.Fluid.Actuators.Valves.TwoWayLinear dp4( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dpValve_nominal=0.01*dp_nominal, filteredOpening=false) "Pressure drop"; Modelica.Blocks.Sources.Constant y4(k=0.01) "Input signal"; equation connect(dp1.port_b, pum.port_a); connect(dp1.port_a, sou.ports[1]); connect(y1.y, pum.y); connect(y.y, dp1.y); connect(dp2.port_b, pum1.port_a); connect(y.y,dp2. y); connect(sou.ports[2], dp2.port_a); connect(y2.y, pum1.y); connect(dp3.port_b, pum2.port_a); connect(y.y,dp3. y); connect(y3.y, pum2.y); connect(dp3.port_a, sou.ports[3]); connect(dp4.port_b, pum3.port_a); connect(y.y,dp4. y); connect(y4.y, pum3.y); connect(dp4.port_a, sou.ports[4]); connect(pum3.port_b, sou1.ports[1]); connect(pum2.port_b, sou1.ports[2]); connect(pum1.port_b, sou1.ports[3]); connect(pum.port_b, sou1.ports[4]); end SpeedControlled_y_pumpCurves;

Buildings.Fluid.Movers.Examples.SpeedControlled_y_pumpCurves.pumpModel Buildings.Fluid.Movers.Examples.SpeedControlled_y_pumpCurves.pumpModel

Declaration of pump model

Buildings.Fluid.Movers.Examples.SpeedControlled_y_pumpCurves.pumpModel

Parameters

TypeNameDefaultDescription
replaceable package MediumPartialMediumMedium in the component
BooleanaddPowerToMediumtrueSet to false to avoid any power (=heat and flow work) being added to medium (may give simpler equations)
Initialization
MassFlowRatem_flow.start0Mass flow rate from port_a to port_b (m_flow > 0 is design flow direction) [kg/s]
Pressuredp.start0Pressure difference between port_a and port_b [Pa]
Realr_V.start1Ratio V_flow/V_flow_max [1]
Characteristics
Booleanuse_powerCharacteristicfalseUse powerCharacteristic (vs. efficiencyCharacteristic)
BooleanmotorCooledByFluidtrueIf true (and if addPowerToMedium = true), then motor heat is added to fluid stream
Dynamics
Equations
DynamicsenergyDynamicsModelica.Fluid.Types.Dynamic...Formulation of energy balance
DynamicsmassDynamicsenergyDynamicsFormulation of mass balance
BooleandynamicBalancefalseSet to true to use a dynamic balance, which often leads to smaller systems of equations
Nominal condition
Timetau1Time constant of fluid volume for nominal flow, used if dynamicBalance=true [s]
Filtered speed
BooleanfilteredSpeedtrue= true, if speed is filtered with a 2nd order CriticalDamping filter
TimeriseTime30Rise time of the filter (time to reach 99.6 % of the speed) [s]
InitinitModelica.Blocks.Types.Init.I...Type of initialization (no init/steady state/initial state/initial output)
Realy_start0Initial value of speed [1]
Initialization
AbsolutePressurep_startMedium.p_defaultStart value of pressure [Pa]
TemperatureT_startMedium.T_defaultStart value of temperature [K]
MassFractionX_start[Medium.nX]Medium.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC_start[Medium.nC]fill(0, Medium.nC)Start value of trace substances
ExtraPropertyC_nominal[Medium.nC]fill(1E-2, Medium.nC)Nominal value of trace substances. (Set to typical order of magnitude.)
Assumptions
BooleanallowFlowReversaltrue= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Advanced
MassFlowRatem_flow_small1E-4*abs(m_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
BooleanhomotopyInitializationtrue= true, use homotopy method
Diagnostics
Booleanshow_Tfalse= true, if actual temperature at port is computed

Connectors

TypeNameDescription
replaceable package MediumMedium in the component
FluidPort_aport_aFluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_bport_bFluid connector b (positive design flow direction is from port_a to port_b)
HeatPort_aheatPortHeat dissipation to environment
output RealOutputPElectrical power consumed [W]
output RealOutputy_actual[1]
input RealInputyConstant normalized rotational speed [1]

Modelica definition

model pumpModel = Buildings.Fluid.Movers.SpeedControlled_y ( redeclare package Medium = Medium, energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState, dynamicBalance=false, per(pressure(V_flow=2/1000*m_flow_nominal*{0.2, 0.4, 0.6, 0.8}, dp=dp_nominal*{0.9, 0.85, 0.6, 0.2}))) "Declaration of pump model";

Automatically generated Mon Jul 13 14:25:45 2015.