Package with base classes for Buildings.Utilities.Math.Functions
Information
This package contains base classes that are used to construct the models in
Buildings.Utilities.Math.Functions.
Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).
Package Content
Power function, regularized near zero, but nonzero value for x=0
Information
Implementation of the second derivative of the function
Buildings.Utilities.Math.Functions.regNonZeroPower.
Inputs
Type | Name | Default | Description |
Real | x | | Abscissa value |
Real | n | | Exponent |
Real | delta | 0.01 | Abscissa value where transition occurs |
Real | der_x | | |
Real | der_2_x | | |
Outputs
Type | Name | Description |
Real | der_2_y | Function value |
Modelica definition
function der_2_regNonZeroPower
"Power function, regularized near zero, but nonzero value for x=0"
input Real x "Abscissa value";
input Real n "Exponent";
input Real delta = 0.01 "Abscissa value where transition occurs";
input Real der_x;
input Real der_2_x;
output Real der_2_y "Function value";
protected
Real a1;
Real a3;
Real delta2;
Real x2;
Real y_d "=y(delta)";
Real yP_d "=dy(delta)/dx";
Real yPP_d "=d^2y(delta)/dx^2";
algorithm
if abs(x) > delta then
der_2_y := n*(n-1)*abs(x)^(n-2);
else
delta2 :=delta*delta;
x2 :=x*x;
y_d :=delta^n;
yP_d :=n*delta^(n - 1);
yPP_d :=n*(n - 1)*delta^(n - 2);
a1 := -(yP_d/delta - yPP_d)/delta2/8;
a3 := (yPP_d - 12 * a1 * delta2)/2;
der_2_y := 12*a1*x2+2*a3;
end if;
end der_2_regNonZeroPower;
Derivative for polynomial function
Information
This function computes the first derivative of a polynomial of arbitrary order.
The original polynomial has the form
y = a1 + a2 x + a3 x2 + ...
This function computes new coefficients
b1 = a2, b2 = 2 a3, ...
and then calls recursively
Buildings.Utilities.Math.polynomial
Inputs
Type | Name | Default | Description |
Real | x | | |
Real | a[:] | | |
Real | dx | | |
Outputs
Type | Name | Description |
Real | y | |
Modelica definition
function der_polynomial "Derivative for polynomial function"
input Real x;
input Real a[:];
input Real dx;
output Real y;
protected
parameter Integer n = size(a, 1)-1;
Real b[n] "Coefficients of derivative polynomial";
algorithm
for i in 1:n loop
b[i] :=a[i+1]*i;
end for;
y := Buildings.Utilities.Math.Functions.polynomial(
a=b, x=x);
end der_polynomial;
Power function, regularized near zero, but nonzero value for x=0
Information
Implementation of the first derivative of the function
Buildings.Utilities.Math.Functions.regNonZeroPower.
Inputs
Type | Name | Default | Description |
Real | x | | Abscissa value |
Real | n | | Exponent |
Real | delta | 0.01 | Abscissa value where transition occurs |
Real | der_x | | |
Outputs
Type | Name | Description |
Real | der_y | Function value |
Modelica definition
function der_regNonZeroPower
"Power function, regularized near zero, but nonzero value for x=0"
annotation(derivative=
der_2_regNonZeroPower);
input Real x
"Abscissa value";
input Real n
"Exponent";
input Real delta = 0.01
"Abscissa value where transition occurs";
input Real der_x;
output Real der_y
"Function value";
protected
Real a1;
Real a3;
Real delta2;
Real x2;
Real y_d
"=y(delta)";
Real yP_d
"=dy(delta)/dx";
Real yPP_d
"=d^2y(delta)/dx^2";
algorithm
if abs(x) > delta
then
der_y :=
sign(x)*n*
abs(x)^(n-1);
else
delta2 :=delta*delta;
x2 :=x*x;
y_d :=delta^n;
yP_d :=n*delta^(n - 1);
yPP_d :=n*(n - 1)*delta^(n - 2);
a1 := -(yP_d/delta - yPP_d)/delta2/8;
a3 := (yPP_d - 12 * a1 * delta2)/2;
der_y := x * ( 4 * a1 * x * x + 2 * a3);
end if;
end der_regNonZeroPower;
Derivative of splice function
Information
Implementation of the first derivative of the function
Buildings.Utilities.Math.Functions.spliceFunction.
Inputs
Type | Name | Default | Description |
Real | pos | | |
Real | neg | | |
Real | x | | |
Real | deltax | 1 | |
Real | dpos | | |
Real | dneg | | |
Real | dx | | |
Real | ddeltax | 0 | |
Outputs
Type | Name | Description |
Real | out | |
Modelica definition
function der_spliceFunction "Derivative of splice function"
input Real pos;
input Real neg;
input Real x;
input Real deltax=1;
input Real dpos;
input Real dneg;
input Real dx;
input Real ddeltax=0;
output Real out;
protected
Real scaledX;
Real scaledX1;
Real dscaledX1;
Real y;
constant Real asin1 = Modelica.Math.asin(1);
algorithm
scaledX1 := x/deltax;
if scaledX1 <= -0.99999999999 then
out := dneg;
elseif scaledX1 >= 0.9999999999 then
out := dpos;
else
scaledX := scaledX1*asin1;
dscaledX1 := (dx - scaledX1*ddeltax)/deltax;
y := (Modelica.Math.tanh(Modelica.Math.tan(scaledX)) + 1)/2;
out := dpos*y + (1 - y)*dneg;
out := out + (pos - neg)*dscaledX1*asin1/2/(
Modelica.Math.cosh(Modelica.Math.tan(scaledX))*Modelica.Math.cos(
scaledX))^2;
end if;
end der_spliceFunction;
Automatically generated Mon May 4 10:27:20 2015.