Buildings.DHC.Networks.Pipes
Package containing pipe models used within district network modeling
Information
This package contains pipe models specific for distribution networks.Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).
Package Content
Name | Description |
---|---|
PipeAutosize | Pipe model parameterized with pressure drop per pipe length |
PipeStandard | Pipe model parameterized with hydraulic diameter |
Validation | Validation models for Pipes |
Buildings.DHC.Networks.Pipes.PipeAutosize
Pipe model parameterized with pressure drop per pipe length
Information
This model is similar to Buildings.Fluid.FixedResistances.HydraulicDiameter except for the modifications below which allow to use this model for computing the hydraulic diameter at initialization, based on the pressure drop per pipe length at nominal flow rate.
-
The parameter
v_nominal
is computed based on the nominal flow rate. -
The equation
dp_nominal = fac*dpStraightPipe_nominal
is solved at initialization for the hydraulic diameterdh
. -
The parameter
dp_nominal
is assigned a value that does not need to be computed at initialization. This is required per Modelica specification because the structural parametercomputeFlowResistance
depends ondp_nominal
and must be evaluated at compile time.
Extends from Buildings.Fluid.FixedResistances.PressureDrop (Fixed flow resistance with dp and m_flow as parameter).
Parameters
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialMedium | Medium in the component | |
Length | dh | Hydraulic diameter (assuming a round cross section area) [m] | |
Real | dp_length_nominal | 250 | Pressure drop per pipe length at nominal flow rate [Pa/m] |
Length | length | Length of the pipe [m] | |
Real | ReC | 4000 | Reynolds number where transition to turbulence starts |
Length | roughness | 2.5e-5 | Absolute roughness of pipe, with a default for a smooth steel pipe (PE100: 7E-6) [m] |
Real | fac | 2 | Factor to take into account resistance of bends etc., fac=dp_nominal/dpStraightPipe_nominal |
Nominal condition | |||
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
PressureDifference | dp_nominal | dp_length_nominal*length | Pressure drop at nominal mass flow rate [Pa] |
Transition to laminar | |||
Real | deltaM | eta_default*dh/4*Modelica.Co... | Fraction of nominal mass flow rate where transition to turbulent occurs |
Assumptions | |||
Boolean | allowFlowReversal | true | = false to simplify equations, assuming, but not enforcing, no flow reversal |
Advanced | |||
Diagnostics | |||
Boolean | show_T | false | = true, if actual temperature at port is computed |
Boolean | from_dp | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate |
Connectors
Type | Name | Description |
---|---|---|
FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) |
FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) |
Modelica definition
Buildings.DHC.Networks.Pipes.PipeStandard
Pipe model parameterized with hydraulic diameter
Information
This model is similar to Buildings.Fluid.FixedResistances.HydraulicDiameter except that a binding equation is provided to compute the nominal fluid velocity from the hydraulic diameter (as opposed to the hydraulic diameter being computed from the nominal fluid velocity in the original model).
Extends from Buildings.Fluid.FixedResistances.HydraulicDiameter (Fixed flow resistance with hydraulic diameter and m_flow as parameter).
Parameters
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialMedium | Medium in the component | |
Length | dh | sqrt(4*m_flow_nominal/rho_de... | Hydraulic diameter (assuming a round cross section area) [m] |
Length | length | Length of the pipe [m] | |
Real | ReC | 4000 | Reynolds number where transition to turbulence starts |
Length | roughness | 2.5e-5 | Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m] |
Real | fac | 2 | Factor to take into account resistance of bends etc., fac=dp_nominal/dpStraightPipe_nominal |
Nominal condition | |||
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
Velocity | v_nominal | m_flow_nominal*4/(rho_defaul... | Velocity at m_flow_nominal (used to compute default value for hydraulic diameter dh) [m/s] |
Assumptions | |||
Boolean | allowFlowReversal | true | = false to simplify equations, assuming, but not enforcing, no flow reversal |
Advanced | |||
Diagnostics | |||
Boolean | show_T | false | = true, if actual temperature at port is computed |
Boolean | from_dp | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate |
Connectors
Type | Name | Description |
---|---|---|
FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) |
FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) |