Buildings.Fluid.Movers.Validation.BaseClasses
Package with base classes for Buildings.Fluid.Movers.Validation
Information
This package contains base classes that are used to construct the models in Buildings.Fluid.Movers.Validation.
Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).
Package Content
Name | Description |
---|---|
ControlledFlowMachine | |
FlowMachine_ZeroFlow | Base class to test flow machines with zero flow rate |
Buildings.Fluid.Movers.Validation.BaseClasses.ControlledFlowMachine
Information
This example demonstrates the use of the flow model with four different configuration. At steady-state, all flow models have the same mass flow rate and pressure difference.Parameters
Type | Name | Default | Description |
---|---|---|---|
SpeedControlled_y | fan1 | fan1(redeclare package Mediu... | Fan with normalized control input between 0 and 1 |
FlowControlled_dp | fan3 | fan3(redeclare package Mediu... | Fan with head as input |
FlowControlled_m_flow | fan2 | fan2(redeclare package Mediu... | Fan with mass flow rate as input |
Modelica definition
model ControlledFlowMachine
package Medium = Buildings.Media.Air "Medium model";
Modelica.Blocks.Sources.Pulse y(
startTime=0,
offset=0,
amplitude=1,
period=120,
width=50);
Buildings.Fluid.Sources.Boundary_pT sou(
redeclare package Medium = Medium,
use_p_in=false,
p=101325,
T=293.15,
nPorts=3);
Buildings.Fluid.Sensors.MassFlowRate masFloRat1(redeclare package Medium =
Medium);
Buildings.Fluid.Sensors.RelativePressure relPre(redeclare package Medium =
Medium);
replaceable Buildings.Fluid.Movers.SpeedControlled_y
fan1(
redeclare package Medium = Medium,
energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState,
redeclare Buildings.Fluid.Movers.Data.Pumps.Wilo.Stratos32slash1to12 per)
constrainedby Buildings.Fluid.Movers.SpeedControlled_y
"Fan with normalized control input between 0 and 1";
Buildings.Fluid.FixedResistances.PressureDrop dp1(
redeclare package Medium = Medium,
from_dp=true,
m_flow_nominal=0.006,
dp_nominal=50000) "Pressure drop";
Buildings.Fluid.FixedResistances.PressureDrop dp2(
redeclare package Medium = Medium,
from_dp=true,
m_flow_nominal=0.006,
dp_nominal=50000) "Pressure drop";
Buildings.Fluid.Sensors.MassFlowRate masFloRat2(
redeclare package Medium = Medium);
Buildings.Fluid.FixedResistances.PressureDrop dp3(
redeclare package Medium = Medium,
from_dp=true,
m_flow_nominal=0.006,
dp_nominal=50000) "Pressure drop";
Buildings.Fluid.Sensors.MassFlowRate masFloRat3(
redeclare package Medium = Medium);
replaceable Buildings.Fluid.Movers.FlowControlled_dp
fan3(
redeclare package Medium = Medium,
m_flow_nominal=6000/3600*1.2,
energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState,
redeclare Buildings.Fluid.Movers.Data.Pumps.Wilo.Stratos32slash1to12 per)
constrainedby Buildings.Fluid.Movers.FlowControlled_dp
"Fan with head as input";
replaceable Buildings.Fluid.Movers.FlowControlled_m_flow
fan2(
redeclare package Medium = Medium,
m_flow_nominal=6000/3600*1.2,
energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState,
redeclare Buildings.Fluid.Movers.Data.Pumps.Wilo.Stratos32slash1to12 per)
constrainedby Buildings.Fluid.Movers.FlowControlled_m_flow
"Fan with mass flow rate as input";
Buildings.Fluid.FixedResistances.PressureDrop dp5(
m_flow_nominal=6000/3600*1.2,
redeclare package Medium = Medium,
dp_nominal=300,
from_dp=true) "Pressure drop";
Buildings.Fluid.FixedResistances.PressureDrop dp6(
m_flow_nominal=6000/3600*1.2,
redeclare package Medium = Medium,
dp_nominal=300,
from_dp=true) "Pressure drop";
Buildings.Fluid.FixedResistances.PressureDrop dp7(
m_flow_nominal=6000/3600*1.2,
redeclare package Medium = Medium,
dp_nominal=300,
from_dp=true) "Pressure drop";
Buildings.Fluid.Sources.Boundary_pT sin(
redeclare package Medium = Medium,
use_p_in=false,
p=101325,
T=293.15,
nPorts=3);
equation
connect(fan1.port_a, relPre.port_b);
connect(fan1.port_b, relPre.port_a);
connect(fan1.port_b, dp1.port_a);
connect(fan2.port_b, dp2.port_a);
connect(fan3.port_b, dp3.port_a);
connect(masFloRat1.m_flow, fan2.m_flow_in);
connect(relPre.p_rel, fan3.dp_in);
connect(dp5.port_b, fan1.port_a);
connect(dp6.port_b, fan2.port_a);
connect(dp7.port_b, fan3.port_a);
connect(y.y, fan1.y);
connect(dp5.port_a, sou.ports[1]);
connect(dp6.port_a, sou.ports[2]);
connect(dp7.port_a, sou.ports[3]);
connect(dp1.port_b, masFloRat1.port_a);
connect(dp2.port_b, masFloRat2.port_a);
connect(dp3.port_b, masFloRat3.port_a);
connect(masFloRat1.port_b, sin.ports[1]);
connect(masFloRat2.port_b, sin.ports[2]);
connect(masFloRat3.port_b, sin.ports[3]);
end ControlledFlowMachine;
Buildings.Fluid.Movers.Validation.BaseClasses.FlowMachine_ZeroFlow
Base class to test flow machines with zero flow rate
Information
This is the base class for examples that demonstrates the use of a flow machine whose flow rate transitions to zero.
Parameters
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | Buildings.Media.Air | Medium model | |
MassFlowRate | m_flow_nominal | 1 | Nominal mass flow rate [kg/s] |
PressureDifference | dp_nominal | 500 | Nominal pressure difference [Pa] |
PartialFlowMachine | floMacSta | redeclare Buildings.Fluid.Mo... | Static model of a flow machine |
PartialFlowMachine | floMacDyn | redeclare Buildings.Fluid.Mo... | Dynamic model of a flow machine |
Connectors
Type | Name | Description |
---|---|---|
replaceable package Medium | Medium model |
Modelica definition
partial model FlowMachine_ZeroFlow
"Base class to test flow machines with zero flow rate"
replaceable package Medium = Buildings.Media.Air
constrainedby Modelica.Media.Interfaces.PartialMedium "Medium model";
parameter Modelica.Units.SI.MassFlowRate m_flow_nominal=1
"Nominal mass flow rate";
parameter Modelica.Units.SI.PressureDifference dp_nominal=500
"Nominal pressure difference";
Modelica.Blocks.Sources.Ramp y(
offset=1,
duration=0.5,
startTime=0.25,
height=-1) "Input signal";
Buildings.Fluid.Sources.Boundary_pT sou(
redeclare package Medium = Medium,
use_p_in=false,
p=101325,
T=293.15,
nPorts=4);
Buildings.Fluid.FixedResistances.PressureDrop dpSta(
redeclare package Medium = Medium,
m_flow_nominal=m_flow_nominal,
dp_nominal=dp_nominal/2) "Pressure drop";
replaceable Buildings.Fluid.Movers.BaseClasses.PartialFlowMachine floMacSta
constrainedby Buildings.Fluid.Movers.BaseClasses.PartialFlowMachine(
redeclare package Medium = Medium,
energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState)
"Static model of a flow machine";
replaceable Buildings.Fluid.Movers.BaseClasses.PartialFlowMachine floMacDyn
constrainedby Buildings.Fluid.Movers.BaseClasses.PartialFlowMachine(
redeclare package Medium = Medium,
energyDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial)
"Dynamic model of a flow machine";
Buildings.Fluid.FixedResistances.PressureDrop dpDyn(
redeclare package Medium = Medium,
m_flow_nominal=m_flow_nominal,
dp_nominal=dp_nominal/2) "Pressure drop";
Modelica.Blocks.Math.Gain gain "Gain for input signal";
Buildings.Fluid.FixedResistances.PressureDrop dpSta1(
redeclare package Medium = Medium,
m_flow_nominal=m_flow_nominal,
dp_nominal=dp_nominal/2) "Pressure drop";
Buildings.Fluid.FixedResistances.PressureDrop dpDyn1(
redeclare package Medium = Medium,
m_flow_nominal=m_flow_nominal,
dp_nominal=dp_nominal/2) "Pressure drop";
equation
connect(floMacSta.port_b, dpSta.port_a);
connect(y.y, gain.u);
connect(floMacDyn.port_b, dpDyn.port_a);
connect(dpSta1.port_b, floMacSta.port_a);
connect(dpDyn1.port_b, floMacDyn.port_a);
connect(dpSta1.port_a, sou.ports[1]);
connect(dpDyn1.port_a, sou.ports[2]);
connect(dpDyn.port_b, sou.ports[3]);
connect(dpSta.port_b, sou.ports[4]);
end FlowMachine_ZeroFlow;