LBL logo

Buildings.BoundaryConditions.WeatherData

Weather data reader

Information

This package contains models to read weather data. It also contains an expandable connector called Bus that is used in the library to provide weather data to the different models.

Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).

Package Content

NameDescription
Buildings.BoundaryConditions.WeatherData.UsersGuide UsersGuide User's Guide
Buildings.BoundaryConditions.WeatherData.ReaderTMY3 ReaderTMY3 Reader for TMY3 weather data
Buildings.BoundaryConditions.WeatherData.Bus Bus Data bus that stores weather data
Buildings.BoundaryConditions.WeatherData.Examples Examples Collection of models that illustrate model use and test models
Buildings.BoundaryConditions.WeatherData.BaseClasses BaseClasses Package with base classes for Buildings.BoundaryConditions.WeatherData

Buildings.BoundaryConditions.WeatherData.ReaderTMY3 Buildings.BoundaryConditions.WeatherData.ReaderTMY3

Reader for TMY3 weather data

Buildings.BoundaryConditions.WeatherData.ReaderTMY3

Information

This component reads TMY3 weather data (Wilcox and Marion, 2008) or user specified weather data.

The following parameters are automatically read from the weather file:

By default, the data bus contains the wet bulb temperature. This introduces a nonlinear equation. However, we have not observed an increase in computing time because of this equation. To disable the computation of the wet bulb temperature, set computeWetBulbTemperature=false.

This model has the option of using a constant value, using the data from the weather file, or using data from an input connector for the following variables: atmospheric pressure, relative humidity, dry bulb temperature, global horizontal radiation, diffuse horizontal radiation, wind direction and wind speed.

By default, all data are obtained from the weather data file, except for the atmospheric pressure, which is set to the parameter pAtm=101325 Pascals.

The parameter *Sou configures the source of the data. For the atmospheric pressure, dry bulb temperature, relative humidity, wind speed and wind direction, the enumeration Buildings.BoundaryConditions.Types.DataSource is used as follows:

Parameter *Sou Data used to compute weather data.
File Use data from file.
Parameter Use value specified by the parameter.
Input Use value from the input connector.

Because global, diffuse and direct radiation are related to each other, the parameter HSou is treated differently. It is set to a value of the enumeration Buildings.BoundaryConditions.Types.RadiationDataSource, and allows the following configurations:

Parameter HSou Data used to compute weather data.
File Use data from file.
Input_HGloHor_HDifHor Use global horizontal and diffuse horizontal radiation from input connector.
Input_HDirNor_HDifHor Use direct normal and diffuse horizontal radiation from input connector.
Input_HDirNor_HGloHor Use direct normal and global horizontal radiation from input connector.

Notes

  1. In HVAC systems, when the fan is off, changes in atmospheric pressure can cause small air flow rates in the duct system due to change in pressure and hence in the mass of air that is stored in air volumes (such as in fluid junctions or in the room model). This may increase computing time. Therefore, the default value for the atmospheric pressure is set to a constant. Furthermore, if the initial pressure of air volumes are different from the atmospheric pressure, then fast pressure transients can happen in the first few seconds of the simulation. This can cause numerical problems for the solver. To avoid this problem, set the atmospheric pressure to the same value as the medium default pressure, which is typically set to the parameter Medium.p_default. For medium models for moist air and dry air, the default is Medium.p_default=101325 Pascals.

  2. Different units apply depending on whether data are obtained from a file, or from a parameter or an input connector:

  3. The ReaderTMY3 should only be used with TMY3 data. It contains a time shift for solar radiation data that is explained below. This time shift needs to be removed if the user may want to use the ReaderTMY3 for other weather data types.

Implementation

To read weather data from the TMY3 weather data file, there are two data readers in this model. One data reader obtains all data except solar radiation, and the other data reader reads only the solar radiation data, shifted by 30 minutes. The reason for this time shift is as follows: The TMY3 weather data file contains for solar radiation the "...radiation received on a horizontal surface during the 60-minute period ending at the timestamp." Thus, as the figure below shows, a more accurate interpolation is obtained if time is shifted by 30 minutes prior to reading the weather data.

image

References

Parameters

TypeNameDefaultDescription
BooleancomputeWetBulbTemperaturetrueIf true, then this model computes the wet bulb temperature
StringfilNam""Name of weather data file
Data source
DataSourcepAtmSouBuildings.BoundaryConditions...Atmospheric pressure
PressurepAtm101325Atmospheric pressure (used if pAtmSou=Parameter) [Pa]
DataSourceTDryBulSouBuildings.BoundaryConditions...Dry bulb temperature
TemperatureTDryBul293.15Dry bulb temperature (used if TDryBul=Parameter) [K]
DataSourcerelHumSouBuildings.BoundaryConditions...Relative humidity
RealrelHum0.5Relative humidity (used if relHum=Parameter) [1]
DataSourcewinSpeSouBuildings.BoundaryConditions...Wind speed
VelocitywinSpe1Wind speed (used if winSpe=Parameter) [m/s]
DataSourcewinDirSouBuildings.BoundaryConditions...Wind direction
AnglewinDir1.0Wind direction (used if winDir=Parameter) [rad]
RadiationDataSourceHSouBuildings.BoundaryConditions...Radiation
Sky temperature
SkyTemperatureCalculationcalTSkyBuildings.BoundaryConditions...Computation of black-body sky temperature

Connectors

TypeNameDescription
input RealInputpAtm_inInput pressure [Pa]
input RealInputTDryBul_inInput dry bulb temperature [K]
input RealInputrelHum_inInput relative humidity [1]
input RealInputwinSpe_inInput wind speed [m/s]
input RealInputwinDir_inInput wind direction [rad]
input RealInputHGloHor_inInput global horizontal radiation [W/m2]
input RealInputHDifHor_inInput diffuse horizontal radiation [W/m2]
input RealInputHDirNor_inInput direct normal radiation [W/m2]
BusweaBusWeather Data Bus
SolarSubBussolBusSub bus with solar position

Modelica definition

block ReaderTMY3 "Reader for TMY3 weather data"

  parameter Boolean computeWetBulbTemperature = true 
    "If true, then this model computes the wet bulb temperature";
  //--------------------------------------------------------------
  // Atmospheric pressure
  parameter Buildings.BoundaryConditions.Types.DataSource pAtmSou=Buildings.BoundaryConditions.Types.DataSource.Parameter 
    "Atmospheric pressure";
  parameter Modelica.SIunits.Pressure pAtm=101325 
    "Atmospheric pressure (used if pAtmSou=Parameter)";
  Modelica.Blocks.Interfaces.RealInput pAtm_in(
    final quantity="Pressure",
    final unit="Pa",
    displayUnit="Pa") if (pAtmSou == Buildings.BoundaryConditions.Types.DataSource.Input) 
    "Input pressure";
  //--------------------------------------------------------------
  // Dry bulb temperature
  parameter Buildings.BoundaryConditions.Types.DataSource TDryBulSou=Buildings.BoundaryConditions.Types.DataSource.File 
    "Dry bulb temperature";
  parameter Modelica.SIunits.Temperature TDryBul(displayUnit="degC") = 293.15 
    "Dry bulb temperature (used if TDryBul=Parameter)";
  Modelica.Blocks.Interfaces.RealInput TDryBul_in(
    final quantity="ThermodynamicTemperature",
    final unit="K",
    displayUnit="degC") if (TDryBulSou == Buildings.BoundaryConditions.Types.DataSource.Input) 
    "Input dry bulb temperature";
  //--------------------------------------------------------------
  // Relative humidity
  parameter Buildings.BoundaryConditions.Types.DataSource relHumSou=Buildings.BoundaryConditions.Types.DataSource.File 
    "Relative humidity";
  parameter Real relHum(
    min=0,
    max=1,
    unit="1") = 0.5 "Relative humidity (used if relHum=Parameter)";
  Modelica.Blocks.Interfaces.RealInput relHum_in(
    min=0,
    max=1,
    unit="1") if (relHumSou == Buildings.BoundaryConditions.Types.DataSource.Input) 
    "Input relative humidity";
  //--------------------------------------------------------------
  // Wind speed
  parameter Buildings.BoundaryConditions.Types.DataSource winSpeSou=Buildings.BoundaryConditions.Types.DataSource.File 
    "Wind speed";
  parameter Modelica.SIunits.Velocity winSpe(min=0) = 1 
    "Wind speed (used if winSpe=Parameter)";
  Modelica.Blocks.Interfaces.RealInput winSpe_in(
    final quantity="Velocity",
    final unit="m/s",
    min=0) if (winSpeSou == Buildings.BoundaryConditions.Types.DataSource.Input) 
    "Input wind speed";
  //--------------------------------------------------------------
  // Wind direction
  parameter Buildings.BoundaryConditions.Types.DataSource winDirSou=Buildings.BoundaryConditions.Types.DataSource.File 
    "Wind direction";
  parameter Modelica.SIunits.Angle winDir=1.0 
    "Wind direction (used if winDir=Parameter)";
  Modelica.Blocks.Interfaces.RealInput winDir_in(
    final quantity="Angle",
    final unit="rad",
    displayUnit="deg") if (winDirSou == Buildings.BoundaryConditions.Types.DataSource.Input) 
    "Input wind direction";

     parameter Buildings.BoundaryConditions.Types.RadiationDataSource HSou=Buildings.BoundaryConditions.Types.RadiationDataSource.File 
    "Radiation";

  //--------------------------------------------------------------
  // Global horizontal radiation
  Modelica.Blocks.Interfaces.RealInput HGloHor_in(
    final quantity="RadiantEnergyFluenceRate",
    final unit="W/m2") if (HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HGloHor_HDifHor or HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HGloHor) 
    "Input global horizontal radiation";
  //--------------------------------------------------------------
  // Diffuse horizontal radiation
  Modelica.Blocks.Interfaces.RealInput HDifHor_in(
    final quantity="RadiantEnergyFluenceRate",
    final unit="W/m2") if (HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HGloHor_HDifHor or HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HDifHor) 
    "Input diffuse horizontal radiation";
  //--------------------------------------------------------------
  // Direct normal radiation
  Modelica.Blocks.Interfaces.RealInput HDirNor_in(final quantity="RadiantEnergyFluenceRate",
      final unit="W/m2") if 
                          (HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HDifHor or HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HGloHor) 
    "Input direct normal radiation";

  parameter String filNam="" "Name of weather data file";
  final parameter Modelica.SIunits.Angle lon(displayUnit="deg")=
    Buildings.BoundaryConditions.WeatherData.BaseClasses.getLongitudeTMY3(
    filNam) "Longitude";
  final parameter Modelica.SIunits.Angle lat(displayUnit="deg")=
    Buildings.BoundaryConditions.WeatherData.BaseClasses.getLatitudeTMY3(
    filNam) "Latitude";
  final parameter Modelica.SIunits.Time timZon(displayUnit="h")=
    Buildings.BoundaryConditions.WeatherData.BaseClasses.getTimeZoneTMY3(filNam) 
    "Time zone";
  Bus weaBus "Weather Data Bus";
  BaseClasses.SolarSubBus solBus "Sub bus with solar position";

  parameter Buildings.BoundaryConditions.Types.SkyTemperatureCalculation
    calTSky=Buildings.BoundaryConditions.Types.SkyTemperatureCalculation.TemperaturesAndSkyCover 
    "Computation of black-body sky temperature";

  constant Real epsCos = 1e-6 "Small value to avoid division by 0";

protected 
  Modelica.Blocks.Tables.CombiTable1Ds datRea(
    final tableOnFile=true,
    final tableName="tab1",
    final fileName=Buildings.BoundaryConditions.WeatherData.BaseClasses.getAbsolutePath(filNam),
    final smoothness=Modelica.Blocks.Types.Smoothness.ContinuousDerivative,
    final columns={2,3,4,5,6,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
        28,29,30}) "Data reader";
  Buildings.BoundaryConditions.WeatherData.BaseClasses.CheckTemperature
    cheTemDryBul "Check dry bulb temperature ";
  Buildings.BoundaryConditions.WeatherData.BaseClasses.CheckTemperature
    cheTemDewPoi "Check dew point temperature";
  Buildings.BoundaryConditions.WeatherData.BaseClasses.ConvertRelativeHumidity
    conRelHum "Convert the relative humidity from percentage to [0, 1] ";
  BaseClasses.CheckPressure chePre "Check the air pressure";
  BaseClasses.CheckSkyCover cheTotSkyCov "Check the total sky cover";
  BaseClasses.CheckSkyCover cheOpaSkyCov "Check the opaque sky cover";
  BaseClasses.CheckRadiation cheGloHorRad 
    "Check the global horizontal radiation";
  BaseClasses.CheckRadiation cheDifHorRad 
    "Check the diffuse horizontal radiation";
  BaseClasses.CheckRadiation cheDirNorRad "Check the direct normal radiation";
  BaseClasses.CheckCeilingHeight cheCeiHei "Check the ceiling height";
  BaseClasses.CheckWindSpeed cheWinSpe "Check the wind speed";
  BaseClasses.CheckRadiation cheHorRad "Check the horizontal radiation";
  BaseClasses.CheckWindDirection cheWinDir "Check the wind direction";
  SkyTemperature.BlackBody TBlaSky(final calTSky=calTSky) 
    "Check the sky black-body temperature";
  Utilities.SimulationTime simTim "Simulation time";
  Modelica.Blocks.Math.Add add 
    "Add 30 minutes to time to shift weather data reader";
  Modelica.Blocks.Sources.Constant con30mins(final k=1800) 
    "Constant used to shift weather data reader";
  Buildings.BoundaryConditions.WeatherData.BaseClasses.LocalCivilTime locTim(
      final lon=lon, final timZon=timZon) "Local civil time";
  Modelica.Blocks.Tables.CombiTable1Ds datRea1(
    final tableOnFile=true,
    final tableName="tab1",
    final fileName=Buildings.BoundaryConditions.WeatherData.BaseClasses.getAbsolutePath(filNam),
    final smoothness=Modelica.Blocks.Types.Smoothness.ContinuousDerivative,
    final columns=8:11) "Data reader";
  Buildings.BoundaryConditions.WeatherData.BaseClasses.ConvertTime conTim1 
    "Convert simulation time to calendar time";
  BaseClasses.ConvertTime conTim "Convert simulation time to calendar time";
  BaseClasses.EquationOfTime eqnTim "Equation of time";
  BaseClasses.SolarTime solTim "Solar time";
  // Conditional connectors
  Modelica.Blocks.Interfaces.RealInput pAtm_in_internal(
    final quantity="Pressure",
    final unit="Pa",
    displayUnit="bar") "Needed to connect to conditional connector";
  Modelica.Blocks.Interfaces.RealInput TDryBul_in_internal(
    final quantity="ThermodynamicTemperature",
    final unit="K",
    displayUnit="degC") "Needed to connect to conditional connector";
  Modelica.Blocks.Interfaces.RealInput relHum_in_internal(
    final quantity="1",
    min=0,
    max=1) "Needed to connect to conditional connector";
  Modelica.Blocks.Interfaces.RealInput winSpe_in_internal(
    final quantity="Velocity",
    final unit="m/s") "Needed to connect to conditional connector";
  Modelica.Blocks.Interfaces.RealInput winDir_in_internal(
    final quantity="Angle",
    final unit="rad",
    displayUnit="deg") "Needed to connect to conditional connector";
  Modelica.Blocks.Interfaces.RealInput HGloHor_in_internal(
    final quantity="RadiantEnergyFluenceRate",
    final unit="W/m2") "Needed to connect to conditional connector";
  Modelica.Blocks.Interfaces.RealInput HDifHor_in_internal(
    final quantity="RadiantEnergyFluenceRate",
    final unit="W/m2") "Needed to connect to conditional connector";
  Modelica.Blocks.Interfaces.RealInput HDirNor_in_internal(
    final quantity="RadiantEnergyFluenceRate",
    final unit="W/m2") "Needed to connect to conditional connector";

  Modelica.Blocks.Math.UnitConversions.From_deg conWinDir 
    "Convert the wind direction unit from [deg] to [rad]";
  Modelica.Blocks.Math.UnitConversions.From_degC conTDryBul;
  BaseClasses.ConvertRadiation conHorRad;
  Modelica.Blocks.Math.UnitConversions.From_degC conTDewPoi 
    "Convert the dew point temperature form [degC] to [K]";
  BaseClasses.ConvertRadiation conDirNorRad;
  BaseClasses.ConvertRadiation conGloHorRad;
  BaseClasses.ConvertRadiation conDifHorRad;
  BaseClasses.CheckRelativeHumidity cheRelHum;
  SolarGeometry.BaseClasses.AltitudeAngle altAng "Solar altitude angle";
   SolarGeometry.BaseClasses.ZenithAngle zenAng(
     final lat = lat) "Zenith angle";
   SolarGeometry.BaseClasses.Declination decAng "Declination angle";
   SolarGeometry.BaseClasses.SolarHourAngle
    solHouAng;
  Modelica.Blocks.Sources.Constant latitude(final k=lat) "Latitude";
  Modelica.Blocks.Sources.Constant longitude(final k=lon) "Longitude";

  //---------------------------------------------------------------------------
  // Optional instanciation of a block that computes the wet bulb temperature.
  // This block may be needed for evaporative cooling towers.
  // By default, it is enabled. This introduces a nonlinear equation, but
  // we have not observed an increase in computing time because of this equation.
  Buildings.Utilities.Psychrometrics.TWetBul_TDryBulPhi tWetBul_TDryBulXi(
      redeclare package Medium = Buildings.Media.PerfectGases.MoistAir,
      TDryBul(displayUnit="degC")) if computeWetBulbTemperature;

equation 
  //---------------------------------------------------------------------------
  // Select atmospheric pressure connector
  if pAtmSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
    pAtm_in_internal = pAtm;
  elseif pAtmSou == Buildings.BoundaryConditions.Types.DataSource.File then
    connect(datRea.y[4], pAtm_in_internal);
  else
    connect(pAtm_in, pAtm_in_internal);
  end if;
  connect(pAtm_in_internal, chePre.PIn);
  //---------------------------------------------------------------------------
  // Select dry bulb temperature connector
  if TDryBulSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
    TDryBul_in_internal = TDryBul;
  elseif TDryBulSou == Buildings.BoundaryConditions.Types.DataSource.Input then
    connect(TDryBul_in, TDryBul_in_internal);
  else
    connect(conTDryBul.y, TDryBul_in_internal);
  end if;
  connect(TDryBul_in_internal, cheTemDryBul.TIn);
  //---------------------------------------------------------------------------
  // Select relative humidity connector
  if relHumSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
    relHum_in_internal = relHum;
  elseif relHumSou == Buildings.BoundaryConditions.Types.DataSource.Input then
    connect(relHum_in, relHum_in_internal);
  else
    connect(conRelHum.relHumOut, relHum_in_internal);
  end if;
  connect(relHum_in_internal, cheRelHum.relHumIn);
  //---------------------------------------------------------------------------
  // Select wind speed connector
  if winSpeSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
    winSpe_in_internal = winSpe;
  elseif winSpeSou == Buildings.BoundaryConditions.Types.DataSource.Input then
    connect(winSpe_in, winSpe_in_internal);
  else
    connect(datRea.y[12], winSpe_in_internal);
  end if;
  connect(winSpe_in_internal, cheWinSpe.winSpeIn);
  //---------------------------------------------------------------------------
  // Select wind direction connector
  if winDirSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
    winDir_in_internal = winDir;
  elseif winDirSou == Buildings.BoundaryConditions.Types.DataSource.Input then
    connect(winDir_in, winDir_in_internal);
  else
    connect(conWinDir.y, winDir_in_internal);
  end if;
  connect(winDir_in_internal, cheWinDir.nIn);
  //---------------------------------------------------------------------------
  // Select global horizontal radiation connector
  if HSou ==  Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HGloHor_HDifHor or HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HGloHor then
    connect(HGloHor_in, HGloHor_in_internal) 
      "Get HGloHor using user input file";
  elseif HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HDifHor then
     HDirNor_in_internal*cos(zenAng.zen)+HDifHor_in_internal = HGloHor_in_internal 
      "Calculate the HGloHor using HDirNor and HDifHor according to (A.4.14) and (A.4.15)";
  else
    connect(conGloHorRad.HOut, HGloHor_in_internal) 
      "Get HGloHor using weather data file";
  end if;
  connect(HGloHor_in_internal, cheGloHorRad.HIn);
  //---------------------------------------------------------------------------
  // Select diffuse horizontal radiation connector
  if HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HGloHor_HDifHor or HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HDifHor then
     connect(HDifHor_in, HDifHor_in_internal) 
      "Get HDifHor using user input file";
  elseif  HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HGloHor then
      HGloHor_in_internal - HDirNor_in_internal*cos(zenAng.zen) = HDifHor_in_internal 
      "Calculate the HGloHor using HDirNor and HDifHor according to (A.4.14) and (A.4.15)";
  else
    connect(conDifHorRad.HOut, HDifHor_in_internal) 
      "Get HDifHor using weather data file";
  end if;
  connect(HDifHor_in_internal, cheDifHorRad.HIn);
  //---------------------------------------------------------------------------
  // Select direct normal radiation connector
  if HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HGloHor or HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HDirNor_HDifHor then
     connect(HDirNor_in, HDirNor_in_internal) 
      "Get HDirNor using user input file";
  elseif  HSou == Buildings.BoundaryConditions.Types.RadiationDataSource.Input_HGloHor_HDifHor then
      (HGloHor_in_internal -HDifHor_in_internal)/Buildings.Utilities.Math.Functions.smoothMax(x1=cos(zenAng.zen), x2=epsCos, deltaX=0.1*epsCos)
       = HDirNor_in_internal 
      "Calculate the HDirNor using HGloHor and HDifHor according to (A.4.14) and (A.4.15)";
  else
    connect(conDirNorRad.HOut, HDirNor_in_internal) 
      "Get HDirNor using weather data file";
  end if;
  connect(HDirNor_in_internal, cheDirNorRad.HIn);

  connect(chePre.POut, weaBus.pAtm);
  connect(cheTotSkyCov.nOut, weaBus.nTot);
  connect(cheOpaSkyCov.nOut, weaBus.nOpa);
  connect(cheGloHorRad.HOut, weaBus.HGloHor);
  connect(cheDifHorRad.HOut, weaBus.HDifHor);
  connect(cheDirNorRad.HOut, weaBus.HDirNor);
  connect(cheCeiHei.ceiHeiOut, weaBus.celHei);
  connect(cheWinSpe.winSpeOut, weaBus.winSpe);
  connect(cheHorRad.HOut, weaBus.radHorIR);
  connect(cheWinDir.nOut, weaBus.winDir);
  connect(cheOpaSkyCov.nOut, TBlaSky.nOpa);
  connect(cheHorRad.HOut, TBlaSky.radHorIR);
  connect(TBlaSky.TBlaSky, weaBus.TBlaSky);
  connect(simTim.y, weaBus.cloTim);
  connect(simTim.y, add.u2);
  connect(con30mins.y, add.u1);
  connect(add.y, conTim1.simTim);
  connect(conTim1.calTim, datRea1.u);
  connect(simTim.y, locTim.cloTim);
  connect(simTim.y, conTim.simTim);
  connect(conTim.calTim, datRea.u);
  connect(simTim.y, eqnTim.nDay);
  connect(eqnTim.eqnTim, solTim.equTim);
  connect(locTim.locTim, solTim.locTim);
  connect(solTim.solTim, weaBus.solTim);
  connect(datRea.y[13], cheTotSkyCov.nIn);
  connect(datRea.y[14], cheOpaSkyCov.nIn);
  connect(datRea.y[16], cheCeiHei.ceiHeiIn);
  connect(datRea.y[11], conWinDir.u);
  connect(datRea1.y[1], conHorRad.HIn);
  connect(conHorRad.HOut, cheHorRad.HIn);
  connect(cheTemDryBul.TOut, TBlaSky.TDryBul);
  connect(datRea.y[1], conTDryBul.u);
  connect(datRea.y[2], conTDewPoi.u);
  connect(conTDewPoi.y, cheTemDewPoi.TIn);
  connect(cheTemDewPoi.TOut, weaBus.TDewPoi);
  connect(TBlaSky.TDewPoi, cheTemDewPoi.TOut);
  connect(datRea1.y[3], conDirNorRad.HIn);
  connect(datRea1.y[2], conGloHorRad.HIn);
  connect(datRea1.y[4], conDifHorRad.HIn);
  connect(conRelHum.relHumIn, datRea.y[3]);
  connect(cheRelHum.relHumOut, weaBus.relHum);
  connect(cheTemDryBul.TOut, weaBus.TDryBul);
  connect(decAng.decAng, zenAng.decAng);
  connect(solHouAng.solHouAng, zenAng.solHouAng);
  connect(solHouAng.solTim, solTim.solTim);

  connect(decAng.nDay, simTim.y);
  connect(zenAng.zen, altAng.zen);
  connect(altAng.alt, solBus.alt);
  connect(zenAng.zen, solBus.zen);
  connect(solBus, weaBus.sol);

  connect(decAng.decAng, solBus.dec);
  connect(solHouAng.solHouAng, solBus.solHouAng);
  connect(longitude.y, solBus.lon);
  connect(latitude.y, solBus.lat);

  // Connectors for wet bulb temperature.
  // These are removed if computeWetBulbTemperature = false
  connect(chePre.POut, tWetBul_TDryBulXi.p);
  connect(tWetBul_TDryBulXi.TWetBul, weaBus.TWetBul);
  connect(cheTemDryBul.TOut, tWetBul_TDryBulXi.TDryBul);
  connect(cheRelHum.relHumOut, tWetBul_TDryBulXi.phi);

end ReaderTMY3;

Buildings.BoundaryConditions.WeatherData.Bus Buildings.BoundaryConditions.WeatherData.Bus

Data bus that stores weather data

Buildings.BoundaryConditions.WeatherData.Bus

Information

This component is an expandable connector that is used to implement a bus that contains the weather data.

Extends from Modelica.Icons.SignalBus (Icon for signal bus).

Modelica definition

expandable connector Bus "Data bus that stores weather data"
  extends Modelica.Icons.SignalBus;

end Bus;

Automatically generated Wed Feb 12 08:14:55 2014.