LBL logo

Buildings.HeatTransfer.Examples

Collection of models that illustrate model use and test models

Information

This package contains examples for the use of models that can be found in Buildings.HeatTransfer.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

NameDescription
Buildings.HeatTransfer.Examples.ConductorStepResponse ConductorStepResponse Test model for heat conductor
Buildings.HeatTransfer.Examples.ConductorSteadyStateTransient ConductorSteadyStateTransient Test model for heat conductor
Buildings.HeatTransfer.Examples.ConductorSingleLayer ConductorSingleLayer Test model for heat conductor
Buildings.HeatTransfer.Examples.ConductorSingleLayerPCM ConductorSingleLayerPCM Test model for heat conductor
Buildings.HeatTransfer.Examples.ConductorSingleLayerCylinder ConductorSingleLayerCylinder Test model for heat conduction in a cylinder
Buildings.HeatTransfer.Examples.ConductorMultiLayer ConductorMultiLayer Test model for heat conductor
Buildings.HeatTransfer.Examples.ConductorInitialization ConductorInitialization Test model for heat conductor initialization


Buildings.HeatTransfer.Examples.ConductorStepResponse Buildings.HeatTransfer.Examples.ConductorStepResponse

Test model for heat conductor

Buildings.HeatTransfer.Examples.ConductorStepResponse

Information

This example illustrates modeling of multi-layer materials. It also tests if the multi-layer material computes the same heat transfer with its boundary condition as two instances of a single layer material. The insulation and the brick are computed using transient heat conduction. The assert block will stop the simulation if the heat exchange with the boundary condition differs.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Concreteconcrete  
Carpetcarpet carpet
Genericcomposite  

Modelica definition

model ConductorStepResponse "Test model for heat conductor"
  import Buildings;
  extends Modelica.Icons.Example;
  parameter Buildings.HeatTransfer.Data.Solids.Concrete concrete(x=0.12, nStaRef=4);
  parameter Buildings.HeatTransfer.Data.Resistances.Carpet carpet "carpet";
  parameter Buildings.HeatTransfer.Data.OpaqueConstructions.Generic composite(
      nLay=2,
      material={carpet,concrete});
  Buildings.HeatTransfer.Conduction.MultiLayer conMul(
    A=2, layers=composite);
  Buildings.HeatTransfer.Conduction.SingleLayer con(
    A=2, material=carpet);
  Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
  Modelica.Blocks.Sources.Step step(
    height=10,
    offset=293.15,
    startTime=3600);
  Buildings.HeatTransfer.Conduction.SingleLayer con1(
    A=2, material=carpet);
  Buildings.HeatTransfer.Sources.FixedTemperature TB1(      T=293.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;
  Buildings.HeatTransfer.Conduction.SingleLayer con2(
    A=2, material=concrete);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA2;
  Buildings.HeatTransfer.Sources.FixedTemperature TB2(      T=293.15);
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo1;
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo2;
  Buildings.Utilities.Diagnostics.AssertEquality assertEquality(threShold=1E-8);
  Buildings.HeatTransfer.Convection.Interior conv1(
                                          A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
  Buildings.HeatTransfer.Convection.Interior conv2(
                                          A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
equation 
  connect(con.port_b,TB. port);
  connect(step.y,TA. T);
  connect(step.y,TA1. T);
  connect(con1.port_b,con2. port_a);
  connect(con2.port_b,TB1. port);
  connect(TA2.T,step. y);
  connect(heaFlo1.port_b,con1. port_a);
  connect(assertEquality.u1,heaFlo2. Q_flow);
  connect(assertEquality.u2,heaFlo1. Q_flow);
  connect(TA.port,con. port_a);
  connect(conMul.port_b,TB2. port);
  connect(conMul.port_a,heaFlo2. port_b);
  connect(TA1.port, conv1.fluid);
  connect(conv1.solid, heaFlo1.port_a);
  connect(TA2.port, conv2.fluid);
  connect(conv2.solid, heaFlo2.port_a);
end ConductorStepResponse;

Buildings.HeatTransfer.Examples.ConductorSteadyStateTransient Buildings.HeatTransfer.Examples.ConductorSteadyStateTransient

Test model for heat conductor

Buildings.HeatTransfer.Examples.ConductorSteadyStateTransient

Information

This example illustrates modeling of multi-layer materials. It also tests if the multi-layer material computes the same heat transfer with its boundary condition as two instances of a single layer material. The insulation is computed in steady-state, whereas the brick is computed using transient heat conduction. The assert block will stop the simulation if the heat exchange with the boundary condition differs.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Brickbrick  
InsulationBoardinsul Insulation
Genericcomposite  

Modelica definition

model ConductorSteadyStateTransient "Test model for heat conductor"
  import Buildings;
  extends Modelica.Icons.Example;

  parameter Buildings.HeatTransfer.Data.Solids.Brick brick(x=0.12, nStaRef=4);
  parameter Buildings.HeatTransfer.Data.Solids.InsulationBoard insul(
    x=0.05,
    c=0,
    nStaRef=3) "Insulation";
  parameter Buildings.HeatTransfer.Data.OpaqueConstructions.Generic composite(nLay=2, material=
       {insul,brick});

  Buildings.HeatTransfer.Conduction.MultiLayer conMul(
    A=2, layers=composite);
  Buildings.HeatTransfer.Conduction.SingleLayer con(
    A=2, material=brick);

  Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA;

  Modelica.Blocks.Sources.Step step(
    height=10,
    offset=293.15,
    startTime=3600);
  Buildings.HeatTransfer.Conduction.SingleLayer con1(
    A=2, material=insul);
  Buildings.HeatTransfer.Sources.FixedTemperature TB1(T=293.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;
  Buildings.HeatTransfer.Conduction.SingleLayer con2(
    A=2, material=brick);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA2;
  Buildings.HeatTransfer.Sources.FixedTemperature TB2(T=293.15);
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo1;
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo2;
  Buildings.Utilities.Diagnostics.AssertEquality assertEquality(threShold=1E-8);
  Buildings.HeatTransfer.Convection.Interior conv1(A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
  Buildings.HeatTransfer.Convection.Interior conv2(A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
equation 
  connect(con.port_b, TB.port);
  connect(step.y, TA.T);
  connect(step.y, TA1.T);
  connect(con1.port_b, con2.port_a);
  connect(con2.port_b, TB1.port);
  connect(TA2.T, step.y);
  connect(heaFlo1.port_b, con1.port_a);
  connect(assertEquality.u1, heaFlo2.Q_flow);
  connect(assertEquality.u2, heaFlo1.Q_flow);
  connect(TA.port, con.port_a);
  connect(conMul.port_b, TB2.port);
  connect(conMul.port_a, heaFlo2.port_b);
  connect(TA1.port, conv1.fluid);
  connect(conv1.solid, heaFlo1.port_a);
  connect(TA2.port, conv2.fluid);
  connect(conv2.solid, heaFlo2.port_a);
end ConductorSteadyStateTransient;

Buildings.HeatTransfer.Examples.ConductorSingleLayer Buildings.HeatTransfer.Examples.ConductorSingleLayer

Test model for heat conductor

Buildings.HeatTransfer.Examples.ConductorSingleLayer

Information

This example tests if two conductors in series computes the same heat transfer as one conductor with twice the thickness. The assert block will stop the simulation if the heat exchange with the boundary condition differs.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Concreteconcrete200  
Concreteconcrete100  

Modelica definition

model ConductorSingleLayer "Test model for heat conductor"
  extends Modelica.Icons.Example;
  import Buildings;
  Buildings.HeatTransfer.Conduction.SingleLayer con(A=1, material=concrete200);
  Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
  Modelica.Blocks.Sources.Step step(
    height=10,
    offset=293.15,
    startTime=3600);
  Buildings.HeatTransfer.Conduction.SingleLayer con1(
    A=1, material=concrete100);
  Buildings.HeatTransfer.Sources.FixedTemperature TB1(      T=293.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;
  Buildings.HeatTransfer.Conduction.SingleLayer con2(
    A=1, material=concrete100);
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo2;
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo1;
  Buildings.Utilities.Diagnostics.AssertEquality assertEquality(threShold=1E-8);
  parameter Buildings.HeatTransfer.Data.Solids.Concrete concrete200(x=0.2, nSta=4);
  parameter Buildings.HeatTransfer.Data.Solids.Concrete concrete100(x=0.1, nSta=2);
  Buildings.HeatTransfer.Convection.Interior conv1(      A=1, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
  Buildings.HeatTransfer.Convection.Interior conv2(      A=1, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
equation 
  connect(con.port_b, TB.port);
  connect(step.y, TA.T);
  connect(step.y, TA1.T);
  connect(con1.port_b, con2.port_a);
  connect(con2.port_b, TB1.port);
  connect(heaFlo2.port_b, con1.port_a);
  connect(heaFlo1.port_b, con.port_a);
  connect(assertEquality.u1, heaFlo2.Q_flow);
  connect(assertEquality.u2, heaFlo1.Q_flow);
  connect(TA.port, conv1.fluid);
  connect(TA1.port, conv2.fluid);
  connect(conv2.solid, heaFlo2.port_a);
  connect(conv1.solid, heaFlo1.port_a);
end ConductorSingleLayer;

Buildings.HeatTransfer.Examples.ConductorSingleLayerPCM Buildings.HeatTransfer.Examples.ConductorSingleLayerPCM

Test model for heat conductor

Buildings.HeatTransfer.Examples.ConductorSingleLayerPCM

Information

This example tests the implementation of the phase-change material (PCM) model.

The phase-change material matPCM is exposed to the same boundary conditions as the non phase-change material. In the construction conPCM2, the phase change is around 20.5 °C. In the construction conPCM, the phase change is around 40.5 °C, which is above the temperature range simulated in this model. Therefore, the same result is expected for the PCM material conPCM as is for two conductors in series. Note that in case of using matPCM, the internal energy is the dependent variable, whereas in case of two conductors in series, the temperature is the dependent variable. However, both models will produce the same results. The assert block will stop the simulation if there is a difference in heat fluxes.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Concreteconcrete100 Non-PCM material
GenericmatPCM PCM material with phase change near 40 degC
GenericmatPCM2 PCM material with phase change near room temperature

Modelica definition

model ConductorSingleLayerPCM "Test model for heat conductor"
  extends Modelica.Icons.Example;
  import Buildings;
  Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15) 
    "Temperature boundary condition";
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA 
    "Temperature boundary condition";
  Modelica.Blocks.Sources.Step step(
    height=10,
    offset=293.15,
    startTime=360);
  Buildings.HeatTransfer.Sources.FixedTemperature TB1(T=293.15) 
    "Temperature boundary condition";
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA1 
    "Temperature boundary condition";
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo2 
    "Heat flow sensor";
  Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo1 
    "Heat flow sensor";
  Buildings.Utilities.Diagnostics.AssertEquality assertEquality(threShold=1E-8,
      startTime=0);
  parameter Buildings.HeatTransfer.Data.Solids.Concrete concrete100(x=0.1, nStaRef=4) 
    "Non-PCM material";
  Buildings.HeatTransfer.Convection.Interior conv1(      A=1, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
  Buildings.HeatTransfer.Convection.Interior conv2(      A=1, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
  Buildings.HeatTransfer.Conduction.SingleLayer conPCM(
    A=1,
    material=matPCM) "Construction with phase change around 40 degC";
  Buildings.HeatTransfer.Conduction.SingleLayer con1(
    A=1, material=concrete100) "Construction without PCM";
  Buildings.HeatTransfer.Conduction.SingleLayer con2(
    A=1, material=concrete100) "Construction without PCM";
  parameter Buildings.HeatTransfer.Data.SolidsPCM.Generic
                                                       matPCM(
    x=0.2,
    k=1.4,
    c=840,
    d=2240,
    nSta=4,
    TSol=273.15 + 40.49,
    TLiq=273.15 + 40.51,
    LHea=100000) "PCM material with phase change near 40 degC";
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA2 
    "Temperature boundary condition";
  Buildings.HeatTransfer.Convection.Interior conv3(      A=1, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
  Buildings.HeatTransfer.Conduction.SingleLayer conPCM2(
    A=1,
    material=matPCM2) "Construction with phase change near room temperature";
  Buildings.HeatTransfer.Sources.FixedTemperature TB2(T=293.15) 
    "Temperature boundary condition";
  parameter Buildings.HeatTransfer.Data.SolidsPCM.Generic
                                                       matPCM2(
    x=0.2,
    k=1.4,
    c=840,
    d=2240,
    nSta=4,
    TSol=273.15 + 20.49,
    TLiq=273.15 + 20.51,
    LHea=100000) "PCM material with phase change near room temperature";
equation 
  connect(step.y, TA.T);
  connect(step.y, TA1.T);
  connect(assertEquality.u1, heaFlo2.Q_flow);
  connect(assertEquality.u2, heaFlo1.Q_flow);
  connect(TA.port, conv1.fluid);
  connect(TA1.port, conv2.fluid);
  connect(conv2.solid, heaFlo2.port_a);
  connect(conv1.solid, heaFlo1.port_a);
  connect(heaFlo1.port_b, conPCM.port_a);
  connect(conPCM.port_b, TB.port);
  connect(heaFlo2.port_b, con1.port_a);
  connect(con1.port_b, con2.port_a);
  connect(con2.port_b, TB1.port);
  connect(step.y, TA2.T);
  connect(TA2.port, conv3.fluid);
  connect(conv3.solid, conPCM2.port_a);
  connect(conPCM2.port_b, TB2.port);
end ConductorSingleLayerPCM;

Buildings.HeatTransfer.Examples.ConductorSingleLayerCylinder Buildings.HeatTransfer.Examples.ConductorSingleLayerCylinder

Test model for heat conduction in a cylinder

Buildings.HeatTransfer.Examples.ConductorSingleLayerCylinder

Information

This example tests a circular conductor with a constant temperature at his boundary.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
HeatFlowRateQ_flow50[W]
Concreteconcrete  

Modelica definition

model ConductorSingleLayerCylinder 
  "Test model for heat conduction in a cylinder"
  extends Modelica.Icons.Example;
  import Buildings;
  parameter Modelica.SIunits.HeatFlowRate  Q_flow=50;
  Buildings.HeatTransfer.Conduction.SingleLayerCylinder
                     con( material=concrete,
                     steadyStateInitial=false,
                     final nSta=8,
                     r_a=0.1,
                     r_b=3,
    h=10,
    TInt_start=293.15,
    TExt_start=293.15);
  Buildings.HeatTransfer.Sources.PrescribedHeatFlow Qa;
  parameter Buildings.HeatTransfer.Data.Soil.Concrete concrete;
 Modelica.Blocks.Sources.Step step(
    offset=0,
    height=Q_flow,
    startTime=3600);
  Buildings.HeatTransfer.Sources.FixedTemperature TBou(T=293.15) 
    "Boundary condition";
equation 
  connect(Qa.port, con.port_a);
  connect(step.y, Qa.Q_flow);
  connect(TBou.port, con.port_b);
end ConductorSingleLayerCylinder;

Buildings.HeatTransfer.Examples.ConductorMultiLayer Buildings.HeatTransfer.Examples.ConductorMultiLayer

Test model for heat conductor

Buildings.HeatTransfer.Examples.ConductorMultiLayer

Information

This example illustrates how to use a solid material, set its heat capacity to zero, and then use this material in a multi-layer construction. The plot window shows that the insulation is computed in steady state, where as the brick is computed using transient heat conduction.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model ConductorMultiLayer "Test model for heat conductor"
  extends Modelica.Icons.Example;
  import Buildings;
  Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
  Modelica.Blocks.Sources.Step step(
    height=10,
    offset=293.15,
    startTime=43200);
  Buildings.HeatTransfer.Conduction.MultiLayer con(
    steadyStateInitial=false,
    redeclare Buildings.HeatTransfer.Data.OpaqueConstructions.Insulation100Concrete200
      layers,
    A=0.1);
  Buildings.HeatTransfer.Convection.Interior conv(      A=0.1, til=Buildings.HeatTransfer.Types.Tilt.Wall) 
    "Convective heat transfer";
equation 
  connect(step.y, TA.T);
  connect(con.port_b, TB.port);
  connect(conv.fluid, TA.port);
  connect(conv.solid, con.port_a);
end ConductorMultiLayer;

Buildings.HeatTransfer.Examples.ConductorInitialization Buildings.HeatTransfer.Examples.ConductorInitialization

Test model for heat conductor initialization

Buildings.HeatTransfer.Examples.ConductorInitialization

Information

This example illustrates how to initialize heat conductors in steady state and with predefined temperatures.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
GenericcompositeWall Composite wall consisting of insulation and material
Brickbrick  
InsulationBoardinsulation  

Modelica definition

model ConductorInitialization 
  "Test model for heat conductor initialization"
  extends Modelica.Icons.Example;
  import Buildings;
  Buildings.HeatTransfer.Sources.FixedTemperature TB(T=303.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
  parameter Buildings.HeatTransfer.Data.OpaqueConstructions.Generic compositeWall(
      material={insulation,brick}, final nLay=2) 
    "Composite wall consisting of insulation and material";
  parameter Buildings.HeatTransfer.Data.Solids.Brick brick(x=0.18, nStaRef=3);
  parameter Buildings.HeatTransfer.Data.Solids.InsulationBoard insulation(x=0.05, nStaRef=2);

  Buildings.HeatTransfer.Conduction.MultiLayer conS1(
    A=2,
    steadyStateInitial=true,
    layers=compositeWall);

  Buildings.HeatTransfer.Conduction.SingleLayer conS2(
    A=2,
    steadyStateInitial=true,
    material=brick);

  Buildings.HeatTransfer.Conduction.MultiLayer conD1(
    A=2,
    steadyStateInitial=false,
    layers=compositeWall,
    T_a_start=288.15,
    T_b_start=298.15);

  Buildings.HeatTransfer.Conduction.SingleLayer conD2(
    A=2,
    material=brick,
    steadyStateInitial=false,
    T_a_start=288.15,
    T_b_start=298.15);

  Buildings.HeatTransfer.Sources.FixedTemperature TB1(T=303.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;

  Buildings.HeatTransfer.Sources.FixedTemperature TB2(T=303.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA2;

  Buildings.HeatTransfer.Sources.FixedTemperature TB3(T=303.15);
  Buildings.HeatTransfer.Sources.PrescribedTemperature TA3;
  Modelica.Blocks.Sources.Step step(
    height=10,
    offset=283.15,
    startTime=43200);

equation 
  connect(step.y, TA.T);
  connect(conS1.port_b, TB.port);
  connect(TA.port, conS1.port_a);
  connect(conS2.port_b, TB1.port);
  connect(TA1.port, conS2.port_a);
  connect(TA1.T, step.y);
  connect(conD1.port_b, TB2.port);
  connect(TA2.port, conD1.port_a);
  connect(TA2.T, step.y);
  connect(TA3.T, step.y);
  connect(TA3.port, conD2.port_a);
  connect(conD2.port_b, TB3.port);
end ConductorInitialization;

Automatically generated Wed May 15 11:57:15 2013.