This package implements performance curves for fans and pumps, and records for parameter that can be used with these performance curves.
The following performance curves are implemented:
Independent variable | Dependent variable | Record for performance data | Function |
---|---|---|---|
Volume flow rate | Pressure | flowParameters | pressure |
Relative volumetric flow rate | Efficiency | efficiencyParameters | efficiency |
Volume flow rate | Power | powerParameters | power |
Name | Description |
---|---|
flowParameters | Record for flow parameters |
efficiencyParameters | Record for efficiency parameters |
powerParameters | Record for electrical power parameters |
pressure | Flow vs. head characteristics for fan or pump pressure raise |
flowApproximationAtOrigin | Approximation for fan or pump pressure raise at origin |
power | Flow vs. electrical power characteristics for fan or pump |
efficiency | Flow vs. efficiency characteristics for fan or pump |
Data record for performance data that describe volume flow rate versus
pressure rise.
The volume flow rate V_flow
must be increasing, i.e.,
V_flow[i] < V_flow[i+1]
.
Both vectors, V_flow
and dp
must have the same size.
Extends from Modelica.Icons.Record (Icon for records).
Type | Name | Default | Description |
---|---|---|---|
VolumeFlowRate | V_flow[:] | Volume flow rate at user-selected operating points [m3/s] | |
Pressure | dp[size(V_flow, 1)] | Fan or pump total pressure at these flow rates [Pa] |
record flowParameters "Record for flow parameters" extends Modelica.Icons.Record; parameter Modelica.SIunits.VolumeFlowRate V_flow[:](each min=0) "Volume flow rate at user-selected operating points"; parameter Modelica.SIunits.Pressure dp[size(V_flow,1)]( each min=0, each displayUnit="Pa") "Fan or pump total pressure at these flow rates";end flowParameters;
Data record for performance data that describe volume flow rate versus
efficiency.
The volume flow rate r_V
must be increasing, i.e.,
r_V[i] < r_V[i+1]
.
Both vectors, r_V
and eta
must have the same size.
Extends from Modelica.Icons.Record (Icon for records).
Type | Name | Default | Description |
---|---|---|---|
Real | r_V[:] | Volumetric flow rate divided by nominal flow rate at user-selected operating points | |
Real | eta[size(r_V, 1)] | Fan or pump efficiency at these flow rates |
record efficiencyParameters "Record for efficiency parameters" extends Modelica.Icons.Record; parameter Real r_V[:](each min=0, each max=1, each displayUnit="1") "Volumetric flow rate divided by nominal flow rate at user-selected operating points"; parameter Real eta[size(r_V,1)]( each min=0, each max=1, each displayUnit="1") "Fan or pump efficiency at these flow rates";end efficiencyParameters;
Data record for performance data that describe volume flow rate versus
electrical power.
The volume flow rate V_flow
must be increasing, i.e.,
V_flow[i] < V_flow[i+1]
.
Both vectors, V_flow
and P
must have the same size.
Extends from Modelica.Icons.Record (Icon for records).
Type | Name | Default | Description |
---|---|---|---|
VolumeFlowRate | V_flow[:] | {0} | Volume flow rate at user-selected operating points [m3/s] |
Power | P[size(V_flow, 1)] | {0} | Fan or pump electrical power at these flow rates [W] |
record powerParameters "Record for electrical power parameters" extends Modelica.Icons.Record; parameter Modelica.SIunits.VolumeFlowRate V_flow[:](each min=0)= {0} "Volume flow rate at user-selected operating points"; parameter Modelica.SIunits.Power P[size(V_flow,1)]( each min=0, max=1, each displayUnit="1") = {0} "Fan or pump electrical power at these flow rates";end powerParameters;
This function computes the fan static pressure raise as a function of volume flow rate and revolution in the form
Δp = rN2 s(V/rN, d) - Δpr ,
where Δp is the pressure rise, rN is the normalized fan speed, V is the volume flow rate and d are performance data for fan or pump power consumption at rN=1. The term
Δpr = V Δpmax ⁄ Vmax δ
models the flow resistance of the fan, approximated using a linear equation. This is done for numerical reasons to avoid a singularity at rN=0. Since δ is small, the contribution of this term is small. The fan and pump models in Buildings.Fluid.Movers modify the user-supplied performance data to add the term Δpr prior to computing the performance curve. Thus, at full speed, the fan or pump can operate exactly at the user-supplied performance data.
The function s(·, ·) is a cubic hermite spline. If the data d define a monotone decreasing sequence, then s(·, d) is a monotone decreasing function.
For rN < δ, the polynomial is replaced with an other model to avoid a singularity at the origin. The composite model is once continuously differentiable in all input variables.
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
flowParameters | data | Pressure performance data | |
VolumeFlowRate | V_flow | Volumetric flow rate [m3/s] | |
Real | r_N | Relative revolution, r_N=N/N_nominal [1] | |
VolumeFlowRate | VDelta_flow | Small volume flow rate [m3/s] | |
Pressure | dpDelta | Small pressure [Pa] | |
VolumeFlowRate | V_flow_max | Maximum volume flow rate at r_N=1 and dp=0 [m3/s] | |
Pressure | dpMax | Maximum pressure at r_N=1 and V_flow=0 [Pa] | |
Real | d[:] | Derivatives at support points for spline interpolation | |
Real | delta | Small value used to transition to other fan curve | |
Real | cBar[2] | Coefficients for linear approximation of pressure vs. flow rate | |
Real | kRes | Linear coefficient for fan-internal pressure drop [kg/(s.m4)] |
Type | Name | Description |
---|---|---|
Pressure | dp | Pressure raise [Pa] |
function pressure "Flow vs. head characteristics for fan or pump pressure raise" extends Modelica.Icons.Function; input Buildings.Fluid.Movers.BaseClasses.Characteristics.flowParameters data "Pressure performance data"; input Modelica.SIunits.VolumeFlowRate V_flow "Volumetric flow rate"; input Real r_N(unit="1") "Relative revolution, r_N=N/N_nominal"; input Modelica.SIunits.VolumeFlowRate VDelta_flow "Small volume flow rate"; input Modelica.SIunits.Pressure dpDelta "Small pressure"; input Modelica.SIunits.VolumeFlowRate V_flow_max "Maximum volume flow rate at r_N=1 and dp=0"; input Modelica.SIunits.Pressure dpMax(min=0) "Maximum pressure at r_N=1 and V_flow=0"; input Real d[:] "Derivatives at support points for spline interpolation"; input Real delta "Small value used to transition to other fan curve"; input Real cBar[2] "Coefficients for linear approximation of pressure vs. flow rate"; input Real kRes(unit="kg/(s.m4)") "Linear coefficient for fan-internal pressure drop"; output Modelica.SIunits.Pressure dp "Pressure raise"; protected Integer dimD(min=2)=size(data.V_flow, 1) "Dimension of data vector";function performanceCurve "Performance curve away from the origin" input Modelica.SIunits.VolumeFlowRate V_flow "Volumetric flow rate"; input Real r_N(unit="1") "Relative revolution, r_N=N/N_nominal"; input Real d[dimD] "Coefficients for polynomial of pressure vs. flow rate"; input Buildings.Fluid.Movers.BaseClasses.Characteristics.flowParameters data "Pressure performance data"; input Integer dimD "Dimension of data vector"; output Modelica.SIunits.Pressure dp "Pressure raise"; protected Modelica.SIunits.VolumeFlowRate rat "Ratio of V_flow/r_N"; Integer i "Integer to select data interval"; algorithm rat := V_flow/r_N; i :=1; // Since the coefficients for the spline were evaluated for // rat_nominal = V_flow_nominal/r_N_nominal = V_flow_nominal/1, we use // V_flow_nominal below for j in 1:dimD-1 loop if rat > data.V_flow[j] then i := j; end if; end for; // Extrapolate or interpolate the data dp:=r_N^2*Buildings.Utilities.Math.Functions.cubicHermiteLinearExtrapolation( x=rat, x1=data.V_flow[i], x2=data.V_flow[i + 1], y1=data.dp[i], y2=data.dp[i + 1], y1d=d[i], y2d=d[i+1]); end performanceCurve ; algorithm if r_N >= delta then dp := performanceCurve(V_flow=V_flow, r_N=r_N, d=d, data=data, dimD=dimD); elseif r_N <= delta/2 then dp := flowApproximationAtOrigin(r_N=r_N, V_flow=V_flow, VDelta_flow= VDelta_flow, dpDelta=dpDelta, delta=delta, cBar=cBar); else dp := Modelica.Fluid.Utilities.regStep(x=r_N-0.75*delta, y1=performanceCurve(V_flow=V_flow, r_N=r_N, d=d, data=data, dimD=dimD), y2=flowApproximationAtOrigin(r_N=r_N, V_flow=V_flow, VDelta_flow=VDelta_flow, dpDelta=dpDelta, delta=delta, cBar=cBar), x_small=delta/4); end if; dp := dp - V_flow*kRes;end pressure;
This function computes the fan static pressure raise as a function of volume flow rate and revolution near the origin. It is used to avoid a singularity in the pump or fan curve if the revolution approaches zero.
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
VolumeFlowRate | V_flow | Volumetric flow rate [m3/s] | |
Real | r_N | Relative revolution, r_N=N/N_nominal [1] | |
VolumeFlowRate | VDelta_flow | Small volume flow rate [m3/s] | |
Pressure | dpDelta | Small pressure [Pa] | |
Real | delta | Small value used to transition to other fan curve | |
Real | cBar[2] | Coefficients for linear approximation of pressure vs. flow rate |
Type | Name | Description |
---|---|---|
Pressure | dp | Pressure raise [Pa] |
function flowApproximationAtOrigin "Approximation for fan or pump pressure raise at origin" extends Modelica.Icons.Function; input Modelica.SIunits.VolumeFlowRate V_flow "Volumetric flow rate"; input Real r_N(unit="1") "Relative revolution, r_N=N/N_nominal"; input Modelica.SIunits.VolumeFlowRate VDelta_flow "Small volume flow rate"; input Modelica.SIunits.Pressure dpDelta "Small pressure"; input Real delta "Small value used to transition to other fan curve"; input Real cBar[2] "Coefficients for linear approximation of pressure vs. flow rate"; output Modelica.SIunits.Pressure dp "Pressure raise"; algorithm dp := r_N * dpDelta + r_N^2 * (cBar[1] + cBar[2]*V_flow);end flowApproximationAtOrigin;
This function computes the fan power consumption for given volume flow rate, speed and performance data. The power consumption is
P = rN3 s(V, d),
where P is the power consumption, rN is the normalized fan speed, V is the volume flow rate and d are performance data for fan or pump power consumption at rN=1.
The function s(·, ·) is a cubic hermite spline. If the data d define a monotone decreasing sequence, then s(·, d) is a monotone decreasing function.
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
powerParameters | data | Pressure performance data | |
VolumeFlowRate | V_flow | Volumetric flow rate [m3/s] | |
Real | r_N | Relative revolution, r_N=N/N_nominal [1] | |
Real | d[:] | Derivatives at support points for spline interpolation |
Type | Name | Description |
---|---|---|
Power | P | Power consumption [W] |
function power "Flow vs. electrical power characteristics for fan or pump" extends Modelica.Icons.Function; input Buildings.Fluid.Movers.BaseClasses.Characteristics.powerParameters data "Pressure performance data"; input Modelica.SIunits.VolumeFlowRate V_flow "Volumetric flow rate"; input Real r_N(unit="1") "Relative revolution, r_N=N/N_nominal"; input Real d[:] "Derivatives at support points for spline interpolation"; output Modelica.SIunits.Power P "Power consumption"; protected Integer n=size(data.V_flow, 1) "Dimension of data vector"; Modelica.SIunits.VolumeFlowRate rat "Ratio of V_flow/r_N"; Integer i "Integer to select data interval"; algorithm if n == 1 then P := r_N^3*data.P[1]; else i :=1; // Since the coefficients for the spline were evaluated for // rat_nominal = V_flow_nominal/r_N_nominal = V_flow_nominal/1, we use // V_flow_nominal below for j in 1:n-1 loop if V_flow > data.V_flow[j] then i := j; end if; end for; // Extrapolate or interpolate the data P:=r_N^3*Buildings.Utilities.Math.Functions.cubicHermiteLinearExtrapolation( x=V_flow, x1=data.V_flow[i], x2=data.V_flow[i + 1], y1=data.P[i], y2=data.P[i + 1], y1d=d[i], y2d=d[i+1]); end if;end power;
This function computes the fan or pump efficiency for given normalized volume flow rate and performance data. The efficiency is
η = s(rV, d),
where η is the efficiency, rV is the normalized volume flow rate, and d are performance data for fan or pump efficiency.
The function s(·, ·) is a cubic hermite spline. If the data d define a monotone decreasing sequence, then s(·, d) is a monotone decreasing function.
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
efficiencyParameters | data | Efficiency performance data | |
Real | r_V | Volumetric flow rate divided by nominal flow rate [1] | |
Real | d[:] | Derivatives at support points for spline interpolation |
Type | Name | Description |
---|---|---|
Real | eta | Efficiency [1] |
function efficiency "Flow vs. efficiency characteristics for fan or pump" extends Modelica.Icons.Function; input Buildings.Fluid.Movers.BaseClasses.Characteristics.efficiencyParameters data "Efficiency performance data"; input Real r_V(unit="1") "Volumetric flow rate divided by nominal flow rate"; input Real d[:] "Derivatives at support points for spline interpolation"; output Real eta(min=0, unit="1") "Efficiency"; protected Integer n = size(data.r_V, 1) "Number of data points"; Integer i "Integer to select data interval"; algorithm if n == 1 then eta := data.eta[1]; else i :=1; for j in 1:n-1 loop if r_V > data.r_V[j] then i := j; end if; end for; // Extrapolate or interpolate the data eta:=Buildings.Utilities.Math.Functions.cubicHermiteLinearExtrapolation( x=r_V, x1=data.r_V[i], x2=data.r_V[i + 1], y1=data.eta[i], y2=data.eta[i + 1], y1d=d[i], y2d=d[i+1]); end if;end efficiency;