Bus that
is used in the library to provide weather data to the different models.
Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).
| Name | Description |
|---|---|
| User's Guide | |
| Reader for TMY3 weather data | |
| Data bus that stores weather data | |
| Collection of models that illustrate model use and test models | |
| Package with base classes for Buildings.BoundaryConditions.WeatherData |
Buildings.BoundaryConditions.WeatherData.ReaderTMY3
This component reads TMY3 weather data (Wilcox and Marion, 2008) or user specified weather data.
The parameter
lon is the longitude of the weather station, and
the parameter timZone is the time zone
relative to Greenwich Mean Time.
By default, the reader obtains values for these parameters
by scanning the TMY3 weather data file except the atmospheric pressure which use 101325 Pascals as default value.
For instance, the atmospheric pressure is set to the parameter pAtm = 101325 Pascals.
The parameter pAtmSou can be used to change the source that is used as the atmospheric pressure.
The input connector will be enabled if
pAtmSou = Buildings.BoundaryConditions.Types.DataSource.Input.
The the weather file will be read if
pAtmSou = Buildings.BoundaryConditions.Types.DataSource.File.
In HVAC systems, when the fan is off, changes in atmospheric pressure can cause small air flow rates
in the duct system due to change in pressure and hence in the mass of air that is stored
in air volumes (such as in fluid junctions or in the room model).
This may increase computing time. Therefore, the default value for the atmospheric pressure
is set to a constant.
Furthermore, if the initial pressure of air volumes are different
from the atmospheric pressure, then fast pressure transients can happen in the first few seconds of the simulation.
This can cause numerical problems for the solver. To avoid this problem, set the atmospheric pressure to the
same value as the medium default pressure, which is typically set to the parameter Medium.p_default.
The data units of user specified input files should be SI units consistent with Modelica standard.
For instance, the unit for the solar radiation should be W/m2 and that for the wind direction should be rad.
The ReaderTMY3 should only be used with TMY3 data. It contains a time shift for solar radiation data that is explained below. This time shift should be removed if the user may want to use the ReaderTMY3 for other weather data types.
To read weather data from the TMY3 weather data file, there are two data readers in this model. One data reader obtains all data except solar radiation, and the other data reader reads only the solar radiation data, shifted by 30 minutes. The reason for this time shift is as follows: The TMY3 weather data file contains for solar radiation the "...radiation received on a horizontal surface during the 60-minute period ending at the timestamp." Thus, as the figure below shows, a more accurate interpolation is obtained if time is shifted by 30 minutes prior to reading the weather data.
| Type | Name | Default | Description |
|---|---|---|---|
| String | filNam | Name of weather data file | |
| Data source | |||
| DataSource | pAtmSou | Buildings.BoundaryConditions... | Atmospheric pressure |
| Pressure | pAtm | 101325 | Atmospheric pressure (used if pAtmSou=Parameter) [Pa] |
| DataSource | TDryBulSou | Buildings.BoundaryConditions... | Dry bulb temperature |
| Temperature | TDryBul | 293.15 | Dry bulb temperature (used if TDryBul=Parameter) [K] |
| DataSource | relHumSou | Buildings.BoundaryConditions... | Relative humidity |
| Real | relHum | 0.5 | Relative humidity (used if relHum=Parameter) [1] |
| DataSource | winSpeSou | Buildings.BoundaryConditions... | Wind speed |
| Velocity | winSpe | 1 | Wind speed (used if winSpe=Parameter) [m/s] |
| DataSource | winDirSou | Buildings.BoundaryConditions... | Wind direction |
| Angle | winDir | 1.0 | Wind direction (used if winDir=Parameter) [rad] |
| DataSource | HGloHorSou | Buildings.BoundaryConditions... | Global horizontal radiation |
| RadiantEnergyFluenceRate | HGloHor | 100 | Global horizontal radiation (used if HGloHor=Parameter) [W/m2] |
| DataSource | HDifHorSou | Buildings.BoundaryConditions... | Diffuse horizontal radiation |
| RadiantEnergyFluenceRate | HDifHor | 50 | Diffuse horizontal radiation (used if HDifHor=Parameter) [W/m2] |
| Sky temperature | |||
| SkyTemperatureCalculation | calTSky | Buildings.BoundaryConditions... | Computation of black-body sky temperature |
| Type | Name | Description |
|---|---|---|
| input RealInput | pAtm_in | Input pressure [Pa] |
| input RealInput | TDryBul_in | Input dry bulb temperature [K] |
| input RealInput | relHum_in | Input relative humidity [1] |
| input RealInput | winSpe_in | Input wind speed [m/s] |
| input RealInput | winDir_in | Input wind direction [rad] |
| input RealInput | HGloHor_in | Input global horizontal radiation [W/m2] |
| input RealInput | HDifHor_in | Input diffuse horizontal radiation [W/m2] |
| Bus | weaBus | Weather Data Bus |
block ReaderTMY3 "Reader for TMY3 weather data "
//--------------------------------------------------------------
// Atmospheric pressure
parameter Buildings.BoundaryConditions.Types.DataSource pAtmSou=Buildings.BoundaryConditions.Types.DataSource.Parameter
"Atmospheric pressure";
parameter Modelica.SIunits.Pressure pAtm=101325
"Atmospheric pressure (used if pAtmSou=Parameter)";
Modelica.Blocks.Interfaces.RealInput pAtm_in(
final quantity="Pressure",
final unit="Pa",
displayUnit="Pa") if (pAtmSou == Buildings.BoundaryConditions.Types.DataSource.Input)
"Input pressure";
//--------------------------------------------------------------
// Dry bulb temperature
parameter Buildings.BoundaryConditions.Types.DataSource TDryBulSou=Buildings.BoundaryConditions.Types.DataSource.File
"Dry bulb temperature";
parameter Modelica.SIunits.Temperature TDryBul(displayUnit="degC") = 293.15
"Dry bulb temperature (used if TDryBul=Parameter)";
Modelica.Blocks.Interfaces.RealInput TDryBul_in(
final quantity="Temperature",
final unit="K",
displayUnit="degC") if (TDryBulSou == Buildings.BoundaryConditions.Types.DataSource.Input)
"Input dry bulb temperature";
//--------------------------------------------------------------
// Relative humidity
parameter Buildings.BoundaryConditions.Types.DataSource relHumSou=Buildings.BoundaryConditions.Types.DataSource.File
"Relative humidity";
parameter Real relHum(
min=0,
max=1,
unit="1") = 0.5 "Relative humidity (used if relHum=Parameter)";
Modelica.Blocks.Interfaces.RealInput relHum_in(
min=0,
max=1,
unit="1") if (relHumSou == Buildings.BoundaryConditions.Types.DataSource.Input)
"Input relative humidity";
//--------------------------------------------------------------
// Wind speed
parameter Buildings.BoundaryConditions.Types.DataSource winSpeSou=Buildings.BoundaryConditions.Types.DataSource.File
"Wind speed";
parameter Modelica.SIunits.Velocity winSpe(min=0) = 1
"Wind speed (used if winSpe=Parameter)";
Modelica.Blocks.Interfaces.RealInput winSpe_in(
final quantity="Velocity",
final unit="m/s",
min=0,
displayUnit="m/s") if (winSpeSou == Buildings.BoundaryConditions.Types.DataSource.Input)
"Input wind speed";
//--------------------------------------------------------------
// Wind direction
parameter Buildings.BoundaryConditions.Types.DataSource winDirSou=Buildings.BoundaryConditions.Types.DataSource.File
"Wind direction";
parameter Modelica.SIunits.Angle winDir=1.0
"Wind direction (used if winDir=Parameter)";
Modelica.Blocks.Interfaces.RealInput winDir_in(
final quantity="Angle",
final unit="rad",
displayUnit="deg") if (winDirSou == Buildings.BoundaryConditions.Types.DataSource.Input)
"Input wind direction";
//--------------------------------------------------------------
// Global horizontal radiation
parameter Buildings.BoundaryConditions.Types.DataSource HGloHorSou=Buildings.BoundaryConditions.Types.DataSource.File
"Global horizontal radiation";
parameter Modelica.SIunits.RadiantEnergyFluenceRate HGloHor=100
"Global horizontal radiation (used if HGloHor=Parameter)";
Modelica.Blocks.Interfaces.RealInput HGloHor_in(
final quantity="RadiantEnergyFluenceRate",
final unit="W/m2",
displayUnit="W/m2") = 100 if (HGloHorSou == Buildings.BoundaryConditions.Types.DataSource.Input)
"Input global horizontal radiation";
//--------------------------------------------------------------
// Diffuse horizontal radiation
parameter Buildings.BoundaryConditions.Types.DataSource HDifHorSou=Buildings.BoundaryConditions.Types.DataSource.File
"Diffuse horizontal radiation";
parameter Modelica.SIunits.RadiantEnergyFluenceRate HDifHor=50
"Diffuse horizontal radiation (used if HDifHor=Parameter)";
Modelica.Blocks.Interfaces.RealInput HDifHor_in(
final quantity="RadiantEnergyFluenceRate",
final unit="W/m2",
displayUnit="W/m2") if (HDifHorSou == Buildings.BoundaryConditions.Types.DataSource.Input)
"Input diffuse horizontal radiation";
parameter String filNam "Name of weather data file";
final parameter Modelica.SIunits.Angle lon(displayUnit="deg")=
Buildings.BoundaryConditions.WeatherData.BaseClasses.getLongitudeTMY3(
filNam) "Longitude";
final parameter Modelica.SIunits.Time timZon(displayUnit="h")=
Buildings.BoundaryConditions.WeatherData.BaseClasses.getTimeZoneTMY3(filNam)
"Time zone";
Bus weaBus "Weather Data Bus";
parameter Buildings.BoundaryConditions.Types.SkyTemperatureCalculation
calTSky=Buildings.BoundaryConditions.Types.SkyTemperatureCalculation.TemperaturesAndSkyCover
"Computation of black-body sky temperature";
protected
Modelica.Blocks.Tables.CombiTable1Ds datRea(
final tableOnFile=true,
final tableName="tab1",
final fileName=filNam,
final smoothness=Modelica.Blocks.Types.Smoothness.ContinuousDerivative,
final columns={2,3,4,5,6,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30}) "Data reader";
Buildings.BoundaryConditions.WeatherData.BaseClasses.CheckTemperature
cheTemDryBul "Check dry bulb temperature ";
Buildings.BoundaryConditions.WeatherData.BaseClasses.CheckTemperature
cheTemDewPoi "Check dew point temperature";
Buildings.BoundaryConditions.WeatherData.BaseClasses.ConvertRelativeHumidity
conRelHum "Convert the relative humidity from percentage to [0, 1] ";
BaseClasses.CheckPressure chePre "Check the air pressure";
BaseClasses.CheckSkyCover cheTotSkyCov "Check the total sky cover";
BaseClasses.CheckSkyCover cheOpaSkyCov "Check the opaque sky cover";
BaseClasses.CheckRadiation cheGloHorRad
"Check the global horizontal radiation";
BaseClasses.CheckRadiation cheDifHorRad
"Check the diffuse horizontal radiation";
BaseClasses.CheckRadiation cheDirNorRad "Check the direct normal radiation";
BaseClasses.CheckCeilingHeight cheCeiHei "Check the ceiling height";
BaseClasses.CheckWindSpeed cheWinSpe "Check the wind speed";
BaseClasses.CheckRadiation cheHorRad "Check the horizontal radiation";
BaseClasses.CheckWindDirection cheWinDir "Check the wind direction";
SkyTemperature.BlackBody TBlaSky(final calTSky=calTSky)
"Check the sky black-body temperature";
Utilities.SimulationTime simTim "Simulation time";
Modelica.Blocks.Math.Add add
"Add 30 minutes to time to shift weather data reader";
Modelica.Blocks.Sources.Constant con30mins(final k=1800)
"Constant used to shift weather data reader";
Buildings.BoundaryConditions.WeatherData.BaseClasses.LocalCivilTime locTim(
final lon=lon, final timZon=timZon) "Local civil time";
Modelica.Blocks.Tables.CombiTable1Ds datRea1(
final tableOnFile=true,
final tableName="tab1",
final fileName=filNam,
final smoothness=Modelica.Blocks.Types.Smoothness.ContinuousDerivative,
final columns=8:11) "Data reader";
Buildings.BoundaryConditions.WeatherData.BaseClasses.ConvertTime conTim1
"Convert simulation time to calendar time";
BaseClasses.ConvertTime conTim "Convert simulation time to calendar time";
BaseClasses.EquationOfTime eqnTim "Equation of time";
BaseClasses.SolarTime solTim "Solar time";
// Conditional connectors
Modelica.Blocks.Interfaces.RealInput pAtm_in_internal(
final quantity="Pressure",
final unit="Pa",
displayUnit="bar") "Needed to connect to conditional connector";
Modelica.Blocks.Interfaces.RealInput TDryBul_in_internal(
final quantity="Temperature",
final unit="K",
displayUnit="degC") "Needed to connect to conditional connector";
Modelica.Blocks.Interfaces.RealInput relHum_in_internal(
final quantity="1",
min=0,
max=1) "Needed to connect to conditional connector";
Modelica.Blocks.Interfaces.RealInput winSpe_in_internal(
final quantity="Velocity",
final unit="m/s",
displayUnit="m/s") "Needed to connect to conditional connector";
Modelica.Blocks.Interfaces.RealInput winDir_in_internal(
final quantity="Angle",
final unit="rad",
displayUnit="deg") "Needed to connect to conditional connector";
Modelica.Blocks.Interfaces.RealInput HGloHor_in_internal(
final quantity="RadiantEnergyFluenceRate",
final unit="W/m2",
displayUnit="W/m2") "Needed to connect to conditional connector";
Modelica.Blocks.Interfaces.RealInput HDifHor_in_internal(
final quantity="RadiantEnergyFluenceRate",
final unit="W/m2",
displayUnit="W/m2") "Needed to connect to conditional connector";
Modelica.Blocks.Math.UnitConversions.From_deg conWinDir
"Convert the wind direction unit from [deg] to [rad]";
Modelica.Blocks.Math.UnitConversions.From_degC conTDryBul;
BaseClasses.ConvertRadiation conHorRad;
Modelica.Blocks.Math.UnitConversions.From_degC conTDewPoi
"Convert the dew point temperature form [degC] to [K]";
BaseClasses.ConvertRadiation conDirNorRad;
BaseClasses.ConvertRadiation conGloHorRad;
BaseClasses.ConvertRadiation conDifHorRad;
BaseClasses.CheckRelativeHumidity cheRelHum;
equation
//---------------------------------------------------------------------------
// Select atmospheric pressure connector
if pAtmSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
pAtm_in_internal = pAtm;
elseif pAtmSou == Buildings.BoundaryConditions.Types.DataSource.File then
connect(datRea.y[4], pAtm_in_internal);
else
connect(pAtm_in, pAtm_in_internal);
end if;
connect(pAtm_in_internal, chePre.PIn);
//---------------------------------------------------------------------------
// Select dry bulb temperature connector
if TDryBulSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
TDryBul_in_internal = TDryBul;
elseif TDryBulSou == Buildings.BoundaryConditions.Types.DataSource.Input then
connect(TDryBul_in, TDryBul_in_internal);
else
connect(conTDryBul.y, TDryBul_in_internal);
end if;
connect(TDryBul_in_internal, cheTemDryBul.TIn);
//---------------------------------------------------------------------------
// Select relative humidity connector
if relHumSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
relHum_in_internal = relHum;
elseif relHumSou == Buildings.BoundaryConditions.Types.DataSource.Input then
connect(relHum_in, relHum_in_internal);
else
connect(conRelHum.relHumOut, relHum_in_internal);
end if;
connect(relHum_in_internal, cheRelHum.relHumIn);
//---------------------------------------------------------------------------
// Select wind speed connector
if winSpeSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
winSpe_in_internal = winSpe;
elseif winSpeSou == Buildings.BoundaryConditions.Types.DataSource.Input then
connect(winSpe_in, winSpe_in_internal);
else
connect(datRea.y[12], winSpe_in_internal);
end if;
connect(winSpe_in_internal, cheWinSpe.winSpeIn);
//---------------------------------------------------------------------------
// Select wind direction connector
if winDirSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
winDir_in_internal = winDir;
elseif winDirSou == Buildings.BoundaryConditions.Types.DataSource.Input then
connect(winDir_in, winDir_in_internal);
else
connect(conWinDir.y, winDir_in_internal);
end if;
connect(winDir_in_internal, cheWinDir.nIn);
//---------------------------------------------------------------------------
// Select global horizontal radiation connector
if HGloHorSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
HGloHor_in_internal = HGloHor;
elseif HGloHorSou == Buildings.BoundaryConditions.Types.DataSource.Input then
connect(HGloHor_in, HGloHor_in_internal);
else
connect(conGloHorRad.HOut, HGloHor_in_internal);
end if;
connect(HGloHor_in_internal, cheGloHorRad.HIn);
//---------------------------------------------------------------------------
// Select diffuse horizontal radiation connector
if HDifHorSou == Buildings.BoundaryConditions.Types.DataSource.Parameter then
HDifHor_in_internal = HDifHor;
elseif HDifHorSou == Buildings.BoundaryConditions.Types.DataSource.Input then
connect(HDifHor_in, HDifHor_in_internal);
else
connect(conDifHorRad.HOut, HDifHor_in_internal);
end if;
connect(HDifHor_in_internal, cheDifHorRad.HIn);
connect(chePre.POut, weaBus.pAtm);
connect(cheTotSkyCov.nOut, weaBus.nTot);
connect(cheOpaSkyCov.nOut, weaBus.nOpa);
connect(cheGloHorRad.HOut, weaBus.HGloHor);
connect(cheDifHorRad.HOut, weaBus.HDifHor);
connect(cheDirNorRad.HOut, weaBus.HDirNor);
connect(cheCeiHei.ceiHeiOut, weaBus.celHei);
connect(cheWinSpe.winSpeOut, weaBus.winSpe);
connect(cheHorRad.HOut, weaBus.radHor);
connect(cheWinDir.nOut, weaBus.winDir);
connect(cheOpaSkyCov.nOut, TBlaSky.nOpa);
connect(cheHorRad.HOut, TBlaSky.radHor);
connect(TBlaSky.TBlaSky, weaBus.TBlaSky);
connect(simTim.y, weaBus.cloTim);
connect(simTim.y, add.u2);
connect(con30mins.y, add.u1);
connect(add.y, conTim1.simTim);
connect(conTim1.calTim, datRea1.u);
connect(simTim.y, locTim.cloTim);
connect(simTim.y, conTim.simTim);
connect(conTim.calTim, datRea.u);
connect(simTim.y, eqnTim.nDay);
connect(eqnTim.eqnTim, solTim.equTim);
connect(locTim.locTim, solTim.locTim);
connect(solTim.solTim, weaBus.solTim);
connect(datRea.y[13], cheTotSkyCov.nIn);
connect(datRea.y[14], cheOpaSkyCov.nIn);
connect(datRea.y[16], cheCeiHei.ceiHeiIn);
connect(datRea.y[11], conWinDir.u);
connect(datRea1.y[1], conHorRad.HIn);
connect(conHorRad.HOut, cheHorRad.HIn);
connect(cheTemDryBul.TOut, TBlaSky.TDryBul);
connect(datRea.y[1], conTDryBul.u);
connect(datRea.y[2], conTDewPoi.u);
connect(conTDewPoi.y, cheTemDewPoi.TIn);
connect(cheTemDewPoi.TOut, weaBus.TDewPoi);
connect(TBlaSky.TDewPoi, cheTemDewPoi.TOut);
connect(datRea1.y[3], conDirNorRad.HIn);
connect(conDirNorRad.HOut, cheDirNorRad.HIn);
connect(datRea1.y[2], conGloHorRad.HIn);
connect(datRea1.y[4], conDifHorRad.HIn);
connect(conRelHum.relHumIn, datRea.y[3]);
connect(cheRelHum.relHumOut, weaBus.relHum);
connect(cheTemDryBul.TOut, weaBus.TDryBul);
end ReaderTMY3;
Buildings.BoundaryConditions.WeatherData.Bus
This component is an expandable connector that is used to implement a bus that contains the weather data.
Extends from Modelica.Icons.SignalBus (Icon for signal bus).
expandable connector Bus "Data bus that stores weather data" extends Modelica.Icons.SignalBus;end Bus;