This package contains examples for the use of models that can be found in Buildings.Fluid.MassExchangers.
Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).
Name | Description |
---|---|
ConstantEffectiveness | |
HumidifierPrescribed | Model that demonstrates the ideal heater model |
Note: This problem fails to translate in Dymola 2012 due to an error in Dymola's support of stream connector. This bug will be corrected in future versions of Dymola.
Extends from Modelica.Icons.Example (Icon for runnable examples).
model ConstantEffectiveness import Buildings; extends Modelica.Icons.Example; package Medium1 = Buildings.Media.PerfectGases.MoistAirUnsaturated; package Medium2 = Buildings.Media.PerfectGases.MoistAirUnsaturated;Buildings.Fluid.Sources.Boundary_pT sin_2( redeclare package Medium = Medium2, T=273.15 + 10, use_p_in=true, nPorts=1); Modelica.Blocks.Sources.Ramp PIn( height=200, duration=60, offset=101330); Buildings.Fluid.Sources.Boundary_pT sou_2( redeclare package Medium = Medium2, T=273.15 + 5, use_p_in=true, use_T_in=true, nPorts=1); Modelica.Blocks.Sources.Ramp TWat( height=10, duration=60, offset=273.15 + 30, startTime=60) "Water temperature"; Modelica.Blocks.Sources.Constant TDb(k=293.15) "Drybulb temperature"; Modelica.Blocks.Sources.Constant POut(k=101325); Buildings.Fluid.Sources.Boundary_pT sin_1( redeclare package Medium = Medium1, T=273.15 + 30, X={0.012,1 - 0.012}, use_p_in=true, p=300000, nPorts=1); Buildings.Fluid.Sources.Boundary_pT sou_1( redeclare package Medium = Medium1, T=273.15 + 50, X={0.012,1 - 0.012}, use_T_in=true, p=100000, nPorts=1); Modelica.Blocks.Sources.Ramp PSin_1( duration=60, startTime=240, height=100, offset=1E5 - 110); Buildings.Fluid.MassExchangers.ConstantEffectiveness hex(redeclare package Medium1 = Medium1, redeclare package Medium2 = Medium2, m1_flow(start=5), m2_flow(start=5), m1_flow_nominal=5, m2_flow_nominal=5, dp1_nominal=100, dp2_nominal=100, show_T=true); inner Modelica.Fluid.System system; equationconnect(PIn.y,sou_2. p_in); connect(TDb.y, sou_2.T_in); connect(TWat.y, sou_1.T_in); connect(PSin_1.y, sin_1.p_in); connect(sou_1.ports[1], hex.port_a1); connect(hex.port_a2, sou_2.ports[1]); connect(POut.y, sin_2.p_in); connect(hex.port_b1, sin_1.ports[1]); connect(hex.port_b2, sin_2.ports[1]); end ConstantEffectiveness;
Model that demonstrates the use of an ideal humidifier.
Both humidifer models are identical, except that one model is configured
as a steady-state model, whereas the other is configured as a dynamic model.
Both humidifiers add water to the medium to track a set-point for the outlet
temperature using adiabatic cooling.
The temperature of the water that is added to the medium is determined by
the parameter T
of the humidifier models.
Extends from Modelica.Icons.Example (Icon for runnable examples).
Type | Name | Default | Description |
---|---|---|---|
MassFlowRate | m_flow_nominal | 3000/1000/20 | Nominal mass flow rate [kg/s] |
model HumidifierPrescribed "Model that demonstrates the ideal heater model" import Buildings; extends Modelica.Icons.Example; package Medium = Buildings.Media.PerfectGases.MoistAirUnsaturated;inner Modelica.Fluid.System system(m_flow_start=0, energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState); parameter Modelica.Media.Interfaces.PartialMedium.MassFlowRate m_flow_nominal= 3000/1000/20 "Nominal mass flow rate";Buildings.Fluid.Sources.Boundary_pT sou( redeclare package Medium = Medium, nPorts=3, use_T_in=false, p(displayUnit="Pa"), T=303.15) "Source"; Buildings.Fluid.MassExchangers.HumidifierPrescribed humSte( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dp_nominal=6000, tau=0, mWat_flow_nominal=m_flow_nominal*0.005, energyDynamics=Modelica.Fluid.Types.Dynamics.SteadyState) "Steady-state model of the humidifier"; Buildings.Fluid.Sensors.TemperatureTwoPort senTem1(redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal) "Temperature sensor"; Modelica.Blocks.Sources.TimeTable TSet(table=[0, 273.15 + 30; 120, 273.15 + 30; 120, 273.15 + 25; 1200, 273.15 + 25]) "Setpoint"; Buildings.Controls.Continuous.LimPID con1( Td=1, k=1, Ti=10, controllerType=Modelica.Blocks.Types.SimpleController.PI, reverseAction=true) "Controller"; Buildings.Fluid.Movers.FlowMachine_m_flow fan( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dynamicBalance=false) "Fan"; Modelica.Blocks.Sources.Constant const(k=2*m_flow_nominal) "Mass flow rate signal for pump"; Buildings.Fluid.MassExchangers.HumidifierPrescribed humDyn( redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal, dp_nominal=6000, mWat_flow_nominal=m_flow_nominal*0.005, energyDynamics=Modelica.Fluid.Types.Dynamics.DynamicFreeInitial, massDynamics=Modelica.Fluid.Types.Dynamics.SteadyStateInitial, T_start=303.15) "Dynamic model of the humidifier"; Buildings.Fluid.Sensors.TemperatureTwoPort senTem2(redeclare package Medium = Medium, m_flow_nominal=m_flow_nominal) "Temperature sensor"; Buildings.Controls.Continuous.LimPID con2( Td=1, Ti=10, k=0.1, controllerType=Modelica.Blocks.Types.SimpleController.PI, reverseAction=true) "Controller"; equationconnect(senTem1.T, con1.u_m); connect(TSet.y, con1.u_s); connect(con1.y, humSte.u); connect(sou.ports[1], humSte.port_a); connect(humSte.port_b, senTem1.port_a); connect(senTem1.port_b, fan.port_a); connect(senTem2.T, con2.u_m); connect(TSet.y, con2.u_s); connect(con2.y, humDyn.u); connect(humDyn.port_b, senTem2.port_a); connect(senTem2.port_b, fan.port_a); connect(sou.ports[2], humDyn.port_a); connect(const.y, fan.m_flow_in); connect(fan.port_b, sou.ports[3]); end HumidifierPrescribed;