## Buildings.HeatTransfer.Examples

Collection of models that illustrate model use and test models

### Information

This package contains examples for the use of models that can be found in Buildings.HeatTransfer.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

### Package Content

NameDescription
ConductorStepResponse Test model for heat conductor
ConductorSteadyStateTransient Test model for heat conductor
ConductorSingleLayer Test model for heat conductor
ConductorSingleLayerCylinder Test model for heat conduction in a cylinder
ConductorMultiLayer Test model for heat conductor
ConductorInitialization Test model for heat conductor initialization

## Buildings.HeatTransfer.Examples.ConductorStepResponse

Test model for heat conductor

### Information

This example illustrates modeling of multi-layer materials. It also tests if the multi-layer material computes the same heat transfer with its boundary condition as two instances of a single layer material. The insulation and the brick are computed using transient heat conduction. The `assert` block will stop the simulation if the heat exchange with the boundary condition differs.

Extends from Modelica.Icons.Example (Icon for runnable examples).

### Modelica definition

```model ConductorStepResponse "Test model for heat conductor"
import Buildings;
extends Modelica.Icons.Example;
Buildings.HeatTransfer.Data.Solids.Concrete concrete(x=0.12, nStaRef=4);
Buildings.HeatTransfer.Data.Resistances.Carpet carpet "carpet";
Buildings.HeatTransfer.Data.OpaqueConstructions.Generic composite(
nLay=2,
material={carpet,concrete});
Buildings.HeatTransfer.Conduction.MultiLayer conMul(
A=2, layers=composite);
Buildings.HeatTransfer.Conduction.SingleLayer con(
A=2, material=carpet);
Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
Modelica.Blocks.Sources.Step step(
height=10,
offset=293.15,
startTime=3600);
Buildings.HeatTransfer.Conduction.SingleLayer con1(
A=2, material=carpet);
Buildings.HeatTransfer.Sources.FixedTemperature TB1(      T=293.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;
Buildings.HeatTransfer.Conduction.SingleLayer con2(
A=2, material=concrete);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA2;
Buildings.HeatTransfer.Sources.FixedTemperature TB2(      T=293.15);
Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo1;
Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo2;
Buildings.Utilities.Diagnostics.AssertEquality assertEquality(threShold=1E-8);
Buildings.HeatTransfer.Convection.Interior conv1(
A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall)
"Convective heat transfer";
Buildings.HeatTransfer.Convection.Interior conv2(
A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall)
"Convective heat transfer";
equation
connect(con.port_b,TB. port);
connect(step.y,TA. T);
connect(step.y,TA1. T);
connect(con1.port_b,con2. port_a);
connect(con2.port_b,TB1. port);
connect(TA2.T,step. y);
connect(heaFlo1.port_b,con1. port_a);
connect(assertEquality.u1,heaFlo2. Q_flow);
connect(assertEquality.u2,heaFlo1. Q_flow);
connect(TA.port,con. port_a);
connect(conMul.port_b,TB2. port);
connect(conMul.port_a,heaFlo2. port_b);
connect(TA1.port, conv1.fluid);
connect(conv1.solid, heaFlo1.port_a);
connect(TA2.port, conv2.fluid);
connect(conv2.solid, heaFlo2.port_a);
end ConductorStepResponse;
```

Test model for heat conductor

### Information

This example illustrates modeling of multi-layer materials. It also tests if the multi-layer material computes the same heat transfer with its boundary condition as two instances of a single layer material. The insulation is computed in steady-state, whereas the brick is computed using transient heat conduction. The `assert` block will stop the simulation if the heat exchange with the boundary condition differs.

Extends from Modelica.Icons.Example (Icon for runnable examples).

### Modelica definition

```model ConductorSteadyStateTransient "Test model for heat conductor"
import Buildings;
extends Modelica.Icons.Example;

Buildings.HeatTransfer.Data.Solids.Brick brick(x=0.12, nStaRef=4);
Buildings.HeatTransfer.Data.Solids.InsulationBoard insul(
x=0.05,
c=0,
nStaRef=3) "Insulation";
Buildings.HeatTransfer.Data.OpaqueConstructions.Generic composite(nLay=2, material=
{insul,brick});

Buildings.HeatTransfer.Conduction.MultiLayer conMul(
A=2, layers=composite);
Buildings.HeatTransfer.Conduction.SingleLayer con(
A=2, material=brick);

Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA;

Modelica.Blocks.Sources.Step step(
height=10,
offset=293.15,
startTime=3600);
Buildings.HeatTransfer.Conduction.SingleLayer con1(
A=2, material=insul);
Buildings.HeatTransfer.Sources.FixedTemperature TB1(T=293.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;
Buildings.HeatTransfer.Conduction.SingleLayer con2(
A=2, material=brick);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA2;
Buildings.HeatTransfer.Sources.FixedTemperature TB2(T=293.15);
Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo1;
Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo2;
Buildings.Utilities.Diagnostics.AssertEquality assertEquality(threShold=1E-8);
Buildings.HeatTransfer.Convection.Interior conv1(A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall)
"Convective heat transfer";
Buildings.HeatTransfer.Convection.Interior conv2(A=2, til=Buildings.HeatTransfer.Types.Tilt.Wall)
"Convective heat transfer";
equation
connect(con.port_b, TB.port);
connect(step.y, TA.T);
connect(step.y, TA1.T);
connect(con1.port_b, con2.port_a);
connect(con2.port_b, TB1.port);
connect(TA2.T, step.y);
connect(heaFlo1.port_b, con1.port_a);
connect(assertEquality.u1, heaFlo2.Q_flow);
connect(assertEquality.u2, heaFlo1.Q_flow);
connect(TA.port, con.port_a);
connect(conMul.port_b, TB2.port);
connect(conMul.port_a, heaFlo2.port_b);
connect(TA1.port, conv1.fluid);
connect(conv1.solid, heaFlo1.port_a);
connect(TA2.port, conv2.fluid);
connect(conv2.solid, heaFlo2.port_a);
```

## Buildings.HeatTransfer.Examples.ConductorSingleLayer

Test model for heat conductor

### Information

This example tests if two conductors in series computes the same heat transfer as one conductor with twice the thickness. The `assert` block will stop the simulation if the heat exchange with the boundary condition differs.

Extends from Modelica.Icons.Example (Icon for runnable examples).

### Modelica definition

```model ConductorSingleLayer "Test model for heat conductor"
extends Modelica.Icons.Example;
import Buildings;
Buildings.HeatTransfer.Conduction.SingleLayer con(A=1, material=concrete200);
Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
Modelica.Blocks.Sources.Step step(
height=10,
offset=293.15,
startTime=3600);
Buildings.HeatTransfer.Conduction.SingleLayer con1(
A=1, material=concrete100);
Buildings.HeatTransfer.Sources.FixedTemperature TB1(      T=293.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;
Buildings.HeatTransfer.Conduction.SingleLayer con2(
A=1, material=concrete100);
Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo2;
Modelica.Thermal.HeatTransfer.Sensors.HeatFlowSensor heaFlo1;
Buildings.Utilities.Diagnostics.AssertEquality assertEquality(threShold=1E-8);
Buildings.HeatTransfer.Data.Solids.Concrete concrete200(x=0.2, nStaRef=4);
Buildings.HeatTransfer.Data.Solids.Concrete concrete100(x=0.1, nStaRef=4);
Buildings.HeatTransfer.Convection.Interior conv1(      A=1, til=Buildings.HeatTransfer.Types.Tilt.Wall)
"Convective heat transfer";
Buildings.HeatTransfer.Convection.Interior conv2(      A=1, til=Buildings.HeatTransfer.Types.Tilt.Wall)
"Convective heat transfer";
equation
connect(con.port_b, TB.port);
connect(step.y, TA.T);
connect(step.y, TA1.T);
connect(con1.port_b, con2.port_a);
connect(con2.port_b, TB1.port);
connect(heaFlo2.port_b, con1.port_a);
connect(heaFlo1.port_b, con.port_a);
connect(assertEquality.u1, heaFlo2.Q_flow);
connect(assertEquality.u2, heaFlo1.Q_flow);
connect(TA.port, conv1.fluid);
connect(TA1.port, conv2.fluid);
connect(conv2.solid, heaFlo2.port_a);
connect(conv1.solid, heaFlo1.port_a);
end ConductorSingleLayer;
```

## Buildings.HeatTransfer.Examples.ConductorSingleLayerCylinder

Test model for heat conduction in a cylinder

### Information

This example tests a circular conductor with a constant temperature at his boundary.

Extends from Modelica.Icons.Example (Icon for runnable examples).

### Parameters

TypeNameDefaultDescription
HeatFlowRateQ_flow50[W]

### Modelica definition

```model ConductorSingleLayerCylinder
"Test model for heat conduction in a cylinder"
extends Modelica.Icons.Example;
import Buildings;
parameter Modelica.SIunits.HeatFlowRate  Q_flow=50;
Buildings.HeatTransfer.Conduction.SingleLayerCylinder
con( material=concrete,
nSta=8,
r_a=0.1,
r_b=3,
h=10,
TInt_start=293.15,
TExt_start=293.15);
Buildings.HeatTransfer.Sources.PrescribedHeatFlow Qa;
Buildings.HeatTransfer.Data.Soil.Concrete           concrete;
Modelica.Blocks.Sources.Step step(
offset=0,
height=Q_flow,
startTime=3600);
Buildings.HeatTransfer.Sources.FixedTemperature TBou(T=293.15)
"Boundary condition";
equation
connect(Qa.port, con.port_a);
connect(step.y, Qa.Q_flow);
connect(TBou.port, con.port_b);
end ConductorSingleLayerCylinder;
```

## Buildings.HeatTransfer.Examples.ConductorMultiLayer

Test model for heat conductor

### Information

This example illustrates how to use a solid material, set its heat capacity to zero, and then use this material in a multi-layer construction. The plot window shows that the insulation is computed in steady state, where as the brick is computed using transient heat conduction.

Extends from Modelica.Icons.Example (Icon for runnable examples).

### Modelica definition

```model ConductorMultiLayer "Test model for heat conductor"
extends Modelica.Icons.Example;
import Buildings;
Buildings.HeatTransfer.Sources.FixedTemperature TB(T=293.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
Modelica.Blocks.Sources.Step step(
height=10,
offset=293.15,
startTime=43200);
Buildings.HeatTransfer.Conduction.MultiLayer con(
redeclare Buildings.HeatTransfer.Data.OpaqueConstructions.Insulation100Concrete200
layers,
A=0.1);
Buildings.HeatTransfer.Convection.Interior conv(      A=0.1, til=Buildings.HeatTransfer.Types.Tilt.Wall)
"Convective heat transfer";
equation
connect(step.y, TA.T);
connect(con.port_b, TB.port);
connect(conv.fluid, TA.port);
connect(conv.solid, con.port_a);
end ConductorMultiLayer;
```

## Buildings.HeatTransfer.Examples.ConductorInitialization

Test model for heat conductor initialization

### Information

This example illustrates how to initialize heat conductors in steady state and with predefined temperatures.

Extends from Modelica.Icons.Example (Icon for runnable examples).

### Modelica definition

```model ConductorInitialization
"Test model for heat conductor initialization"
extends Modelica.Icons.Example;
import Buildings;
Buildings.HeatTransfer.Sources.FixedTemperature TB(T=303.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA;
Buildings.HeatTransfer.Data.OpaqueConstructions.Generic compositeWall(
material={insulation,brick}, final nLay=2)
"Composite wall consisting of insulation and material";
Buildings.HeatTransfer.Data.Solids.Brick brick(x=0.18, nStaRef=3);
Buildings.HeatTransfer.Data.Solids.InsulationBoard insulation(x=0.05, nStaRef=2);

Buildings.HeatTransfer.Conduction.MultiLayer conS1(
A=2,
layers=compositeWall);

Buildings.HeatTransfer.Conduction.SingleLayer conS2(
A=2,
material=brick);

Buildings.HeatTransfer.Conduction.MultiLayer conD1(
A=2,
layers=compositeWall,
T_a_start=288.15,
T_b_start=298.15);

Buildings.HeatTransfer.Conduction.SingleLayer conD2(
A=2,
material=brick,
T_a_start=288.15,
T_b_start=298.15);

Buildings.HeatTransfer.Sources.FixedTemperature TB1(T=303.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA1;

Buildings.HeatTransfer.Sources.FixedTemperature TB2(T=303.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA2;

Buildings.HeatTransfer.Sources.FixedTemperature TB3(T=303.15);
Buildings.HeatTransfer.Sources.PrescribedTemperature TA3;
Modelica.Blocks.Sources.Step step(
height=10,
offset=283.15,
startTime=43200);

equation
connect(step.y, TA.T);
connect(conS1.port_b, TB.port);
connect(TA.port, conS1.port_a);
connect(conS2.port_b, TB1.port);
connect(TA1.port, conS2.port_a);
connect(TA1.T, step.y);
connect(conD1.port_b, TB2.port);
connect(TA2.port, conD1.port_a);
connect(TA2.T, step.y);
connect(TA3.T, step.y);
connect(TA3.port, conD2.port_a);
connect(conD2.port_b, TB3.port);
end ConductorInitialization;
```

Automatically generated Thu Dec 8 16:35:28 2011.