This is a medium model that is identical to Buildings.Media.GasesPTDecoupled.MoistAir, but in this model, the air must not be saturated. If the air is saturated, use the medium model Buildings.Media.GasesPTDecoupled.MoistAir instead of this one.
This medium model has been added to allow an explicit computation of
the function
T_phX
so that it is once differentiable in h
with a continuous derivative. This allows obtaining an analytic
expression for the Jacobian, and therefore simplifies the computation
of initial conditions that can be numerically challenging for
thermo-fluid systems.
This new formulation often leads to smaller systems of nonlinear equations
because it allows to invert the function T_phX
analytically.
Extends from Modelica.Media.Interfaces.PartialCondensingGases (Base class for mixtures of condensing and non-condensing gases).
Name | Description |
---|---|
Water=1 | Index of water (in substanceNames, massFractions X, etc.) |
Air=2 | Index of air (in substanceNames, massFractions X, etc.) |
k_mair=steam.MM/dryair.MM | ratio of molar weights |
dryair=Buildings.Media.PerfectGases.Common.SingleGasData.Air | |
steam=Buildings.Media.PerfectGases.Common.SingleGasData.H2O | |
pStp=101325 | Pressure for which dStp is defined |
dStp=1.2 | Fluid density at pressure pStp |
BaseProperties | |
Xsaturation | Steam water mass fraction of saturation boundary in kg_water/kg_moistair |
setState_pTX | Thermodynamic state as function of p, T and composition X |
setState_phX | Thermodynamic state as function of p, h and composition X |
setState_dTX | Thermodynamic state as function of d, T and composition X |
gasConstant | Gas constant (computation neglects liquid fraction) |
saturationPressureLiquid | Return saturation pressure of water as a function of temperature T in the range of 273.16 to 373.16 K |
saturationPressureLiquid_der | Time derivative of saturationPressureLiquid |
sublimationPressureIce | Saturation curve valid for 223.16 <= T <= 273.16. Outside of these limits a (less accurate) result is returned |
saturationPressure | Saturation curve valid for 223.16 <= T <= 373.16 (and slightly outside with less accuracy) |
pressure | Gas pressure |
temperature | Gas temperature |
density | Gas density |
specificEntropy | Specific entropy (liquid part neglected, mixing entropy included) |
enthalpyOfVaporization | Enthalpy of vaporization of water |
HeatCapacityOfWater | Specific heat capacity of water (liquid only) which is constant |
enthalpyOfLiquid | Enthalpy of liquid (per unit mass of liquid) which is linear in the temperature |
der_enthalpyOfLiquid | Temperature derivative of enthalpy of liquid per unit mass of liquid |
enthalpyOfCondensingGas | Enthalpy of steam per unit mass of steam |
der_enthalpyOfCondensingGas | Derivative of enthalpy of steam per unit mass of steam |
enthalpyOfGas | Enthalpy of gas mixture per unit mass of gas mixture |
enthalpyOfDryAir | Enthalpy of dry air per unit mass of dry air |
der_enthalpyOfDryAir | Derivative of enthalpy of dry air per unit mass of dry air |
specificHeatCapacityCp | Specific heat capacity of gas mixture at constant pressure |
der_specificHeatCapacityCp | Derivative of specific heat capacity of gas mixture at constant pressure |
specificHeatCapacityCv | Specific heat capacity of gas mixture at constant volume |
der_specificHeatCapacityCv | Derivative of specific heat capacity of gas mixture at constant volume |
dynamicViscosity | dynamic viscosity of dry air |
thermalConductivity | Thermal conductivity of dry air as a polynomial in the temperature |
specificEnthalpy | Specific enthalpy |
specificInternalEnergy | Specific internal energy |
specificGibbsEnergy | Specific Gibbs energy |
specificHelmholtzEnergy | Specific Helmholtz energy |
h_pTX | Compute specific enthalpy from pressure, temperature and mass fraction |
T_phX | Compute temperature from specific enthalpy and mass fraction |
enthalpyOfNonCondensingGas | Enthalpy of non-condensing gas per unit mass |
der_enthalpyOfNonCondensingGas | Derivative of enthalpy of non-condensing gas per unit mass |
Inherited | |
ThermodynamicState | thermodynamic state variables |
FluidConstants | extended fluid constants |
fluidConstants | constant data for the fluid |
moleToMassFractions | Return mass fractions X from mole fractions |
massToMoleFractions | Return mole fractions from mass fractions X |
ThermoStates | Enumeration type for independent variables |
mediumName="unusablePartialMedium" | Name of the medium |
substanceNames={mediumName} | Names of the mixture substances. Set substanceNames={mediumName} if only one substance. |
extraPropertiesNames=fill("", 0) | Names of the additional (extra) transported properties. Set extraPropertiesNames=fill("",0) if unused |
singleState | = true, if u and d are not a function of pressure |
reducedX=true | = true if medium contains the equation sum(X) = 1.0; set reducedX=true if only one substance (see docu for details) |
fixedX=false | = true if medium contains the equation X = reference_X |
reference_p=101325 | Reference pressure of Medium: default 1 atmosphere |
reference_T=298.15 | Reference temperature of Medium: default 25 deg Celsius |
reference_X=fill(1/nX, nX) | Default mass fractions of medium |
p_default=101325 | Default value for pressure of medium (for initialization) |
T_default=Modelica.SIunits.Conversions.from_degC(20) | Default value for temperature of medium (for initialization) |
h_default=specificEnthalpy_pTX(p_default, T_default, X_default) | Default value for specific enthalpy of medium (for initialization) |
X_default=reference_X | Default value for mass fractions of medium (for initialization) |
nS=size(substanceNames, 1) | Number of substances |
nX=nS | Number of mass fractions |
nXi=if fixedX then 0 else if reducedX then nS - 1 else nS | Number of structurally independent mass fractions (see docu for details) |
nC=size(extraPropertiesNames, 1) | Number of extra (outside of standard mass-balance) transported properties |
C_nominal=1.0e-6*ones(nC) | Default for the nominal values for the extra properties |
setState_psX | Return thermodynamic state as function of p, s and composition X or Xi |
setSmoothState | Return thermodynamic state so that it smoothly approximates: if x > 0 then state_a else state_b |
prandtlNumber | Return the Prandtl number |
heatCapacity_cp | alias for deprecated name |
heatCapacity_cv | alias for deprecated name |
isentropicExponent | Return isentropic exponent |
isentropicEnthalpy | Return isentropic enthalpy |
velocityOfSound | Return velocity of sound |
isobaricExpansionCoefficient | Return overall the isobaric expansion coefficient beta |
beta | alias for isobaricExpansionCoefficient for user convenience |
isothermalCompressibility | Return overall the isothermal compressibility factor |
kappa | alias of isothermalCompressibility for user convenience |
density_derp_h | Return density derivative w.r.t. pressure at const specific enthalpy |
density_derh_p | Return density derivative w.r.t. specific enthalpy at constant pressure |
density_derp_T | Return density derivative w.r.t. pressure at const temperature |
density_derT_p | Return density derivative w.r.t. temperature at constant pressure |
density_derX | Return density derivative w.r.t. mass fraction |
molarMass | Return the molar mass of the medium |
specificEnthalpy_pTX | Return specific enthalpy from p, T, and X or Xi |
specificEntropy_pTX | Return specific enthalpy from p, T, and X or Xi |
density_pTX | Return density from p, T, and X or Xi |
temperature_phX | Return temperature from p, h, and X or Xi |
density_phX | Return density from p, h, and X or Xi |
temperature_psX | Return temperature from p,s, and X or Xi |
density_psX | Return density from p, s, and X or Xi |
specificEnthalpy_psX | Return specific enthalpy from p, s, and X or Xi |
AbsolutePressure | Type for absolute pressure with medium specific attributes |
Density | Type for density with medium specific attributes |
DynamicViscosity | Type for dynamic viscosity with medium specific attributes |
EnthalpyFlowRate | Type for enthalpy flow rate with medium specific attributes |
MassFlowRate | Type for mass flow rate with medium specific attributes |
MassFraction | Type for mass fraction with medium specific attributes |
MoleFraction | Type for mole fraction with medium specific attributes |
MolarMass | Type for molar mass with medium specific attributes |
MolarVolume | Type for molar volume with medium specific attributes |
IsentropicExponent | Type for isentropic exponent with medium specific attributes |
SpecificEnergy | Type for specific energy with medium specific attributes |
SpecificInternalEnergy | Type for specific internal energy with medium specific attributes |
SpecificEnthalpy | Type for specific enthalpy with medium specific attributes |
SpecificEntropy | Type for specific entropy with medium specific attributes |
SpecificHeatCapacity | Type for specific heat capacity with medium specific attributes |
SurfaceTension | Type for surface tension with medium specific attributes |
Temperature | Type for temperature with medium specific attributes |
ThermalConductivity | Type for thermal conductivity with medium specific attributes |
PrandtlNumber | Type for Prandtl number with medium specific attributes |
VelocityOfSound | Type for velocity of sound with medium specific attributes |
ExtraProperty | Type for unspecified, mass-specific property transported by flow |
CumulativeExtraProperty | Type for conserved integral of unspecified, mass specific property |
ExtraPropertyFlowRate | Type for flow rate of unspecified, mass-specific property |
IsobaricExpansionCoefficient | Type for isobaric expansion coefficient with medium specific attributes |
DipoleMoment | Type for dipole moment with medium specific attributes |
DerDensityByPressure | Type for partial derivative of density with resect to pressure with medium specific attributes |
DerDensityByEnthalpy | Type for partial derivative of density with resect to enthalpy with medium specific attributes |
DerEnthalpyByPressure | Type for partial derivative of enthalpy with resect to pressure with medium specific attributes |
DerDensityByTemperature | Type for partial derivative of density with resect to temperature with medium specific attributes |
Choices | Types, constants to define menu choices |
constant Integer Water=1 "Index of water (in substanceNames, massFractions X, etc.)";
constant Integer Air=2 "Index of air (in substanceNames, massFractions X, etc.)";
constant Real k_mair = steam.MM/dryair.MM "ratio of molar weights";
constant Buildings.Media.PerfectGases.Common.DataRecord dryair= Buildings.Media.PerfectGases.Common.SingleGasData.Air;
constant Buildings.Media.PerfectGases.Common.DataRecord steam= Buildings.Media.PerfectGases.Common.SingleGasData.H2O;
constant AbsolutePressure pStp = 101325 "Pressure for which dStp is defined";
constant Density dStp = 1.2 "Fluid density at pressure pStp";
Type | Name | Default | Description |
---|---|---|---|
Boolean | standardOrderComponents | true | if true, and reducedX = true, the last element of X will be computed from the other ones |
Advanced | |||
Boolean | preferredMediumStates | false | = true if StateSelect.prefer shall be used for the independent property variables of the medium |
redeclare replaceable model extends BaseProperties( T(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default), p(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default), Xi(stateSelect=if preferredMediumStates then StateSelect.prefer else StateSelect.default)) /* p, T, X = X[Water] are used as preferred states, since only then all other quantities can be computed in a recursive sequence. If other variables are selected as states, static state selection is no longer possible and non-linear algebraic equations occur. */ MassFraction x_water "Mass of total water/mass of dry air"; Real phi "Relative humidity"; protected constant SI.MolarMass[2] MMX = {steam.MM,dryair.MM} "Molar masses of components"; // MassFraction X_liquid "Mass fraction of liquid water"; MassFraction X_steam "Mass fraction of steam water"; MassFraction X_air "Mass fraction of air"; MassFraction X_sat "Steam water mass fraction of saturation boundary in kg_water/kg_moistair"; MassFraction x_sat "Steam water mass content of saturation boundary in kg_water/kg_dryair"; AbsolutePressure p_steam_sat "Partial saturation pressure of steam"; equation assert(T >= 200.0 and T <= 423.15, " Temperature T is not in the allowed range 200.0 K <= (T =" + String(T) + " K) <= 423.15 K required from medium model \"" + mediumName + "\"."); /* assert(Xi[Water] <= X_sat, "The medium model '" + mediumName + "' must not be saturated.\n" + "To model a saturated medium, use 'Buildings.Media.GasesPTDecoupled.MoistAir' instead of this medium.\n" + " T = " + String(T) + "\n" + " X_sat = " + String(X_sat) + "\n" + " Xi[Water] = " + String(Xi[Water]) + "\n" + " phi = " + String(phi) + "\n" + " p = " + String(p)); */ MM = 1/(Xi[Water]/MMX[Water]+(1.0-Xi[Water])/MMX[Air]); p_steam_sat = min(saturationPressure(T),0.999*p); X_sat = min(p_steam_sat * k_mair/max(100*Modelica.Constants.eps, p - p_steam_sat)*(1 - Xi[Water]), 1.0) "Water content at saturation with respect to actual water content"; // X_liquid = max(Xi[Water] - X_sat, 0.0); // X_steam = Xi[Water]-X_liquid; X_steam = Xi[Water]; // There is no liquid in this medium model X_air = 1-Xi[Water]; h = specificEnthalpy_pTX(p,T,Xi); R = dryair.R*(1 - Xi[Water]) + steam.R*Xi[Water]; // Equation for ideal gas, from h=u+p*v and R*T=p*v, from which follows that u = h-R*T. // u = h-R*T; // However, in this medium, the gas law is d/dStp=p/pStp, from which follows using h=u+pv that // u= h-p*v = h-p/d = h-pStp/dStp u = h-pStp/dStp; // d = p/(R*T); d/dStp = p/pStp; /* Note, u and d are computed under the assumption that the volume of the liquid water is neglible with respect to the volume of air and of steam */ state.p = p; state.T = T; state.X = X; // this x_steam is water load / dry air!!!!!!!!!!! x_sat = k_mair*p_steam_sat/max(100*Modelica.Constants.eps,p - p_steam_sat); x_water = Xi[Water]/max(X_air,100*Modelica.Constants.eps); phi = p/p_steam_sat*Xi[Water]/(Xi[Water] + k_mair*X_air); end BaseProperties;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | Thermodynamic state record |
Type | Name | Description |
---|---|---|
MassFraction | X_sat | Steam mass fraction of sat. boundary [kg/kg] |
function Xsaturation = Buildings.Media.PerfectGases.MoistAir.Xsaturation "Steam water mass fraction of saturation boundary in kg_water/kg_moistair";
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Thermodynamic state |
redeclare function setState_pTX "Thermodynamic state as function of p, T and composition X" extends Buildings.Media.PerfectGases.MoistAir.setState_pTX; end setState_pTX;
T_phX
provided by this package as opposed to the
implementation provided by its parent package.
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | Specific enthalpy [J/kg] | |
MassFraction | X[:] | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state |
redeclare function setState_phX "Thermodynamic state as function of p, h and composition X" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "Specific enthalpy"; input MassFraction X[:] "Mass fractions"; output ThermodynamicState state; algorithm state := if size(X,1) == nX then ThermodynamicState(p=p,T=T_phX(p,h,X),X=X) else ThermodynamicState(p=p,T=T_phX(p,h,cat(1,X,{1-sum(X)})), X=cat(1,X,{1-sum(X)})); // ThermodynamicState(p=p,T=T_phX(p,h,X), X=cat(1,X,{1-sum(X)}));end setState_phX;
Type | Name | Default | Description |
---|---|---|---|
Density | d | density [kg/m3] | |
Temperature | T | Temperature [K] | |
MassFraction | X[:] | reference_X | Mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
ThermodynamicState | state | Thermodynamic state |
redeclare function setState_dTX "Thermodynamic state as function of d, T and composition X" extends Buildings.Media.PerfectGases.MoistAir.setState_dTX; end setState_dTX;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | R | mixture gas constant [J/(kg.K)] |
redeclare function gasConstant "Gas constant (computation neglects liquid fraction)" extends Buildings.Media.PerfectGases.MoistAir.gasConstant; end gasConstant;
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | Tsat | saturation temperature [K] |
Type | Name | Description |
---|---|---|
AbsolutePressure | psat | saturation pressure [Pa] |
function saturationPressureLiquid "Return saturation pressure of water as a function of temperature T in the range of 273.16 to 373.16 K" annotation(derivative=Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.saturationPressureLiquid_der); extends Modelica.Icons.Function; input SI.Temperature Tsat "saturation temperature"; output SI.AbsolutePressure psat "saturation pressure"; algorithm psat := 611.657*Modelica.Math.exp(17.2799 - 4102.99/(Tsat - 35.719));end saturationPressureLiquid;
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Temperature | Tsat | Saturation temperature [K] | |
Real | dTsat | Saturation temperature derivative [K/s] |
Type | Name | Description |
---|---|---|
Real | psat_der | Saturation pressure [Pa/s] |
function saturationPressureLiquid_der "Time derivative of saturationPressureLiquid" extends Modelica.Icons.Function; input SI.Temperature Tsat "Saturation temperature"; input Real dTsat(unit="K/s") "Saturation temperature derivative"; output Real psat_der(unit="Pa/s") "Saturation pressure"; algorithm psat_der:=611.657*Modelica.Math.exp(17.2799 - 4102.99/(Tsat - 35.719))*4102.99*dTsat/(Tsat - 35.719)/(Tsat - 35.719);end saturationPressureLiquid_der;
Type | Name | Default | Description |
---|---|---|---|
Temperature | Tsat | sublimation temperature [K] |
Type | Name | Description |
---|---|---|
AbsolutePressure | psat | sublimation pressure [Pa] |
function sublimationPressureIce = Buildings.Media.PerfectGases.MoistAir.sublimationPressureIce "Saturation curve valid for 223.16 <= T <= 273.16. Outside of these limits a (less accurate) result is returned";
Type | Name | Default | Description |
---|---|---|---|
Temperature | Tsat | saturation temperature [K] |
Type | Name | Description |
---|---|---|
AbsolutePressure | psat | saturation pressure [Pa] |
redeclare function extends saturationPressure "Saturation curve valid for 223.16 <= T <= 373.16 (and slightly outside with less accuracy)" algorithm psat := Buildings.Utilities.Math.Functions.spliceFunction( saturationPressureLiquid(Tsat),sublimationPressureIce(Tsat),Tsat-273.16,1.0);end saturationPressure;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
AbsolutePressure | p | Pressure [Pa] |
redeclare function pressure "Gas pressure" extends Buildings.Media.PerfectGases.MoistAir.pressure; end pressure;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
Temperature | T | Temperature [K] |
redeclare function temperature "Gas temperature" extends Buildings.Media.PerfectGases.MoistAir.temperature; end temperature;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state |
Type | Name | Description |
---|---|---|
Density | d | Density [kg/m3] |
redeclare function density "Gas density" extends Modelica.Icons.Function; input ThermodynamicState state; output Density d "Density"; algorithm d :=state.p*dStp/pStp; end density;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEntropy | s | Specific entropy [J/(kg.K)] |
redeclare function specificEntropy "Specific entropy (liquid part neglected, mixing entropy included)" extends Buildings.Media.PerfectGases.MoistAir.specificEntropy; end specificEntropy;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | r0 | vaporization enthalpy [J/kg] |
redeclare function extends enthalpyOfVaporization "Enthalpy of vaporization of water" algorithm r0 := 2501014.5; end enthalpyOfVaporization;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | [K] |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cp_fl | [J/(kg.K)] |
function HeatCapacityOfWater "Specific heat capacity of water (liquid only) which is constant" extends Modelica.Icons.Function; input Temperature T; output SpecificHeatCapacity cp_fl; algorithm cp_fl := 4186; end HeatCapacityOfWater;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | liquid enthalpy [J/kg] |
redeclare replaceable function extends enthalpyOfLiquid "Enthalpy of liquid (per unit mass of liquid) which is linear in the temperature" annotation(derivative=der_enthalpyOfLiquid); algorithm h := (T - 273.15)*4186;end enthalpyOfLiquid;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] | |
Real | der_T | temperature derivative |
Type | Name | Description |
---|---|---|
Real | der_h | derivative of liquid enthalpy |
replaceable function der_enthalpyOfLiquid "Temperature derivative of enthalpy of liquid per unit mass of liquid" extends Modelica.Icons.Function; input Temperature T "temperature"; input Real der_T "temperature derivative"; output Real der_h "derivative of liquid enthalpy"; algorithm der_h := 4186*der_T; end der_enthalpyOfLiquid;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | steam enthalpy [J/kg] |
redeclare function enthalpyOfCondensingGas "Enthalpy of steam per unit mass of steam" annotation(derivative=der_enthalpyOfCondensingGas); extends Modelica.Icons.Function; input Temperature T "temperature"; output SpecificEnthalpy h "steam enthalpy"; algorithm h := (T-273.15) * steam.cp + Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.enthalpyOfVaporization(T);end enthalpyOfCondensingGas;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] | |
Real | der_T | temperature derivative [K/s] |
Type | Name | Description |
---|---|---|
Real | der_h | derivative of steam enthalpy [J/(kg.s)] |
replaceable function der_enthalpyOfCondensingGas "Derivative of enthalpy of steam per unit mass of steam" extends Modelica.Icons.Function; input Temperature T "temperature"; input Real der_T(unit="K/s") "temperature derivative"; output Real der_h(unit="J/(kg.s)") "derivative of steam enthalpy"; algorithm der_h := steam.cp*der_T; end der_enthalpyOfCondensingGas;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] | |
MassFraction | X[:] | vector of mass fractions [kg/kg] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | specific enthalpy [J/kg] |
redeclare replaceable function extends enthalpyOfGas "Enthalpy of gas mixture per unit mass of gas mixture" algorithm h := Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.enthalpyOfCondensingGas(T)*X[Water] + Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.enthalpyOfDryAir(T)*(1.0-X[Water]); end enthalpyOfGas;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | dry air enthalpy [J/kg] |
replaceable function enthalpyOfDryAir "Enthalpy of dry air per unit mass of dry air" annotation(derivative=der_enthalpyOfDryAir); extends Modelica.Icons.Function; input Temperature T "temperature"; output SpecificEnthalpy h "dry air enthalpy"; algorithm h := (T - 273.15)*dryair.cp;end enthalpyOfDryAir;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] | |
Real | der_T | temperature derivative [K/s] |
Type | Name | Description |
---|---|---|
Real | der_h | derivative of dry air enthalpy [J/(kg.s)] |
replaceable function der_enthalpyOfDryAir "Derivative of enthalpy of dry air per unit mass of dry air" extends Modelica.Icons.Function; input Temperature T "temperature"; input Real der_T(unit="K/s") "temperature derivative"; output Real der_h(unit="J/(kg.s)") "derivative of dry air enthalpy"; algorithm der_h := dryair.cp*der_T; end der_enthalpyOfDryAir;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cp | Specific heat capacity at constant pressure [J/(kg.K)] |
redeclare replaceable function extends specificHeatCapacityCp "Specific heat capacity of gas mixture at constant pressure" annotation(derivative=der_specificHeatCapacityCp); algorithm cp := dryair.cp*(1-state.X[Water]) +steam.cp*state.X[Water];end specificHeatCapacityCp;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | ||
ThermodynamicState | der_state |
Type | Name | Description |
---|---|---|
Real | der_cp | [J/(kg.K.s)] |
replaceable function der_specificHeatCapacityCp "Derivative of specific heat capacity of gas mixture at constant pressure" input ThermodynamicState state; input ThermodynamicState der_state; output Real der_cp(unit="J/(kg.K.s)"); algorithm der_cp := (steam.cp-dryair.cp)*der_state.X[Water]; end der_specificHeatCapacityCp;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificHeatCapacity | cv | Specific heat capacity at constant volume [J/(kg.K)] |
redeclare replaceable function extends specificHeatCapacityCv "Specific heat capacity of gas mixture at constant volume" annotation(derivative=der_specificHeatCapacityCv); algorithm cv:= dryair.cv*(1-state.X[Water]) +steam.cv*state.X[Water];end specificHeatCapacityCv;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | ||
ThermodynamicState | der_state |
Type | Name | Description |
---|---|---|
Real | der_cv | [J/(kg.K.s)] |
replaceable function der_specificHeatCapacityCv "Derivative of specific heat capacity of gas mixture at constant volume" input ThermodynamicState state; input ThermodynamicState der_state; output Real der_cv(unit="J/(kg.K.s)"); algorithm der_cv := (steam.cv-dryair.cv)*der_state.X[Water]; end der_specificHeatCapacityCv;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
DynamicViscosity | eta | Dynamic viscosity [Pa.s] |
redeclare function extends dynamicViscosity "dynamic viscosity of dry air" algorithm eta := 1.85E-5; end dynamicViscosity;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
ThermalConductivity | lambda | Thermal conductivity [W/(m.K)] |
redeclare function extends thermalConductivity "Thermal conductivity of dry air as a polynomial in the temperature" import Modelica.Media.Incompressible.TableBased.Polynomials_Temp; algorithm lambda := Polynomials_Temp.evaluate({(-4.8737307422969E-008), 7.67803133753502E-005, 0.0241814385504202}, Modelica.SIunits.Conversions.to_degC(state.T)); end thermalConductivity;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy [J/kg] |
redeclare function extends specificEnthalpy "Specific enthalpy" algorithm h := Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.h_pTX(state.p, state.T, state.X); end specificEnthalpy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | u | Specific internal energy [J/kg] |
redeclare function extends specificInternalEnergy "Specific internal energy" extends Modelica.Icons.Function; algorithm u := Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.h_pTX(state.p,state.T,state.X) - pStp/dStp; end specificInternalEnergy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | g | Specific Gibbs energy [J/kg] |
redeclare function extends specificGibbsEnergy "Specific Gibbs energy" extends Modelica.Icons.Function; algorithm g := Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.h_pTX(state.p,state.T,state.X) - state.T*specificEntropy(state); end specificGibbsEnergy;
Type | Name | Default | Description |
---|---|---|---|
ThermodynamicState | state | thermodynamic state record |
Type | Name | Description |
---|---|---|
SpecificEnergy | f | Specific Helmholtz energy [J/kg] |
redeclare function extends specificHelmholtzEnergy "Specific Helmholtz energy" extends Modelica.Icons.Function; algorithm f := Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.h_pTX(state.p,state.T,state.X) - gasConstant(state)*state.T - state.T*Buildings.Media.GasesPTDecoupled.MoistAirUnsaturated.specificEntropy(state); end specificHelmholtzEnergy;
Type | Name | Default | Description |
---|---|---|---|
Pressure | p | Pressure [Pa] | |
Temperature | T | Temperature [K] | |
MassFraction | X[nX] | Mass fractions of moist air [1] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | Specific enthalpy at p, T, X [J/kg] |
function h_pTX "Compute specific enthalpy from pressure, temperature and mass fraction" extends Modelica.Icons.Function; input SI.Pressure p "Pressure"; input SI.Temperature T "Temperature"; input SI.MassFraction X[nX] "Mass fractions of moist air"; output SI.SpecificEnthalpy h "Specific enthalpy at p, T, X"; protected SI.AbsolutePressure p_steam_sat "Partial saturation pressure of steam"; SI.MassFraction x_sat "steam water mass fraction of saturation boundary"; SI.SpecificEnthalpy hDryAir "Enthalpy of dry air"; algorithm p_steam_sat :=saturationPressure(T); x_sat :=k_mair*p_steam_sat/(p - p_steam_sat); /* assert(X[Water]-0.001 < x_sat/(1 + x_sat), "The medium model '" + mediumName + "' must not be saturated.\n" + "To model a saturated medium, use 'Buildings.Media.GasesPTDecoupled.MoistAir' instead of this medium.\n" + " T = " + String(T) + "\n" + " x_sat = " + String(x_sat) + "\n" + " X[Water] = " + String(X[Water]) + "\n" + " phi = " + String(X[Water]/((x_sat)/(1+x_sat))) + "\n" + " p = " + String(p)); */ h := (T - 273.15)*dryair.cp * (1 - X[Water]) + ((T-273.15) * steam.cp + 2501014.5) * X[Water];end h_pTX;
Type | Name | Default | Description |
---|---|---|---|
AbsolutePressure | p | Pressure [Pa] | |
SpecificEnthalpy | h | specific enthalpy [J/kg] | |
MassFraction | X[:] | mass fractions of composition [kg/kg] |
Type | Name | Description |
---|---|---|
Temperature | T | temperature [K] |
function T_phX "Compute temperature from specific enthalpy and mass fraction" extends Modelica.Icons.Function; input AbsolutePressure p "Pressure"; input SpecificEnthalpy h "specific enthalpy"; input MassFraction[:] X "mass fractions of composition"; output Temperature T "temperature"; protected SI.AbsolutePressure p_steam_sat "Partial saturation pressure of steam"; SI.MassFraction x_sat "steam water mass fraction of saturation boundary"; algorithm T := 273.15 + (h-2501014.5 * X[Water])/(dryair.cp * (1 - X[Water])+steam.cp*X[Water]); // Check for saturation p_steam_sat :=saturationPressure(T); x_sat :=k_mair*p_steam_sat/(p - p_steam_sat); /* assert(X[Water]-0.001 < x_sat/(1 + x_sat), "The medium model '" + mediumName + "' must not be saturated.\n" + "To model a saturated medium, use 'Buildings.Media.GasesPTDecoupled.MoistAir' instead of this medium.\n" + " T = " + String(T) + "\n" + " x_sat = " + String(x_sat) + "\n" + " X[Water] = " + String(X[Water]) + "\n" + " phi = " + String(X[Water]/((x_sat)/(1+x_sat))) + "\n" + " p = " + String(p)); */end T_phX;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] |
Type | Name | Description |
---|---|---|
SpecificEnthalpy | h | enthalpy [J/kg] |
redeclare function enthalpyOfNonCondensingGas "Enthalpy of non-condensing gas per unit mass" annotation(derivative=der_enthalpyOfNonCondensingGas); extends Modelica.Icons.Function; input Temperature T "temperature"; output SpecificEnthalpy h "enthalpy"; algorithm h := enthalpyOfDryAir(T);end enthalpyOfNonCondensingGas;
Type | Name | Default | Description |
---|---|---|---|
Temperature | T | temperature [K] | |
Real | der_T | temperature derivative |
Type | Name | Description |
---|---|---|
Real | der_h | derivative of steam enthalpy |
replaceable function der_enthalpyOfNonCondensingGas "Derivative of enthalpy of non-condensing gas per unit mass" extends Modelica.Icons.Function; input Temperature T "temperature"; input Real der_T "temperature derivative"; output Real der_h "derivative of steam enthalpy"; algorithm der_h := der_enthalpyOfDryAir(T, der_T); end der_enthalpyOfNonCondensingGas;