This package contains functions to operate on polynomials, in particular to determine the derivative and the integral of a polynomial and to use a polynomial to fit a given set of data points.
Copyright © 2004-2010, Modelica Association and DLR.
This package is free software. It can be redistributed and/or modified under the terms of the Modelica license, see the license conditions and the accompanying disclaimer in the documentation of package Modelica in file "Modelica/package.mo".
Extends from Modelica.Icons.Package (Icon for standard packages).
Name | Description |
---|---|
evaluate | Evaluate polynomial at a given abszissa value |
derivative | Derivative of polynomial |
derivativeValue | Value of derivative of polynomial at abszissa value u |
secondDerivativeValue | Value of 2nd derivative of polynomial at abszissa value u |
integral | Indefinite integral of polynomial p(u) |
integralValue | Integral of polynomial p(u) from u_low to u_high |
fitting | Computes the coefficients of a polynomial that fits a set of data points in a least-squares sense |
evaluate_der | Evaluate polynomial at a given abszissa value |
integralValue_der | Time derivative of integral of polynomial p(u) from u_low to u_high, assuming only u_high as time-dependent (Leibnitz rule) |
derivativeValue_der | time derivative of derivative of polynomial |
Type | Name | Default | Description |
---|---|---|---|
Real | p[:] | Polynomial coefficients (p[1] is coefficient of highest power) | |
Real | u | Abszissa value |
Type | Name | Description |
---|---|---|
Real | y | Value of polynomial at u |
function evaluate "Evaluate polynomial at a given abszissa value" annotation(derivative=evaluate_der); extends Modelica.Icons.Function; input Real p[:] "Polynomial coefficients (p[1] is coefficient of highest power)"; input Real u "Abszissa value"; output Real y "Value of polynomial at u"; algorithm y := p[1]; for j in 2:size(p, 1) loop y := p[j] + u*y; end for;end evaluate;
Type | Name | Default | Description |
---|---|---|---|
Real | p1[:] | Polynomial coefficients (p1[1] is coefficient of highest power) |
Type | Name | Description |
---|---|---|
Real | p2[size(p1, 1) - 1] | Derivative of polynomial p1 |
function derivative "Derivative of polynomial" extends Modelica.Icons.Function; input Real p1[:] "Polynomial coefficients (p1[1] is coefficient of highest power)"; output Real p2[size(p1, 1) - 1] "Derivative of polynomial p1"; protected Integer n=size(p1, 1); algorithm for j in 1:n-1 loop p2[j] := p1[j]*(n - j); end for; end derivative;
Type | Name | Default | Description |
---|---|---|---|
Real | p[:] | Polynomial coefficients (p[1] is coefficient of highest power) | |
Real | u | Abszissa value |
Type | Name | Description |
---|---|---|
Real | y | Value of derivative of polynomial at u |
function derivativeValue "Value of derivative of polynomial at abszissa value u" annotation(derivative=derivativeValue_der); extends Modelica.Icons.Function; input Real p[:] "Polynomial coefficients (p[1] is coefficient of highest power)"; input Real u "Abszissa value"; output Real y "Value of derivative of polynomial at u"; protected Integer n=size(p, 1); algorithm y := p[1]*(n - 1); for j in 2:size(p, 1)-1 loop y := p[j]*(n - j) + u*y; end for;end derivativeValue;
Type | Name | Default | Description |
---|---|---|---|
Real | p[:] | Polynomial coefficients (p[1] is coefficient of highest power) | |
Real | u | Abszissa value |
Type | Name | Description |
---|---|---|
Real | y | Value of 2nd derivative of polynomial at u |
function secondDerivativeValue "Value of 2nd derivative of polynomial at abszissa value u" extends Modelica.Icons.Function; input Real p[:] "Polynomial coefficients (p[1] is coefficient of highest power)"; input Real u "Abszissa value"; output Real y "Value of 2nd derivative of polynomial at u"; protected Integer n=size(p, 1); algorithm y := p[1]*(n - 1)*(n - 2); for j in 2:size(p, 1)-2 loop y := p[j]*(n - j)*(n - j - 1) + u*y; end for; end secondDerivativeValue;
Type | Name | Default | Description |
---|---|---|---|
Real | p1[:] | Polynomial coefficients (p1[1] is coefficient of highest power) |
Type | Name | Description |
---|---|---|
Real | p2[size(p1, 1) + 1] | Polynomial coefficients of indefinite integral of polynomial p1 (polynomial p2 + C is the indefinite integral of p1, where C is an arbitrary constant) |
function integral "Indefinite integral of polynomial p(u)" extends Modelica.Icons.Function; input Real p1[:] "Polynomial coefficients (p1[1] is coefficient of highest power)"; output Real p2[size(p1, 1) + 1] "Polynomial coefficients of indefinite integral of polynomial p1 (polynomial p2 + C is the indefinite integral of p1, where C is an arbitrary constant)"; protected Integer n=size(p1, 1) + 1 "degree of output polynomial"; algorithm for j in 1:n-1 loop p2[j] := p1[j]/(n-j); end for; end integral;
Type | Name | Default | Description |
---|---|---|---|
Real | p[:] | Polynomial coefficients | |
Real | u_high | High integrand value | |
Real | u_low | 0 | Low integrand value, default 0 |
Type | Name | Description |
---|---|---|
Real | integral | Integral of polynomial p from u_low to u_high |
function integralValue "Integral of polynomial p(u) from u_low to u_high" annotation(derivative=integralValue_der); extends Modelica.Icons.Function; input Real p[:] "Polynomial coefficients"; input Real u_high "High integrand value"; input Real u_low=0 "Low integrand value, default 0"; output Real integral=0.0 "Integral of polynomial p from u_low to u_high"; protected Integer n=size(p, 1) "degree of integrated polynomial"; Real y_low=0 "value at lower integrand"; algorithm for j in 1:n loop integral := u_high*(p[j]/(n - j + 1) + integral); y_low := u_low*(p[j]/(n - j + 1) + y_low); end for; integral := integral - y_low;end integralValue;
Polynomials.fitting(u,y,n) computes the coefficients of a polynomial p(u) of degree "n" that fits the data "p(u[i]) - y[i]" in a least squares sense. The polynomial is returned as a vector p[n+1] that has the following definition:
p(u) = p[1]*u^n + p[2]*u^(n-1) + ... + p[n]*u + p[n+1];
Extends from Modelica.Icons.Function (Icon for functions).
Type | Name | Default | Description |
---|---|---|---|
Real | u[:] | Abscissa data values | |
Real | y[size(u, 1)] | Ordinate data values | |
Integer | n | Order of desired polynomial that fits the data points (u,y) |
Type | Name | Description |
---|---|---|
Real | p[n + 1] | Polynomial coefficients of polynomial that fits the date points |
function fitting "Computes the coefficients of a polynomial that fits a set of data points in a least-squares sense" extends Modelica.Icons.Function; input Real u[:] "Abscissa data values"; input Real y[size(u, 1)] "Ordinate data values"; input Integer n(min=1) "Order of desired polynomial that fits the data points (u,y)"; output Real p[n + 1] "Polynomial coefficients of polynomial that fits the date points"; protected Real V[size(u, 1), n + 1] "Vandermonde matrix"; algorithm // Construct Vandermonde matrix V[:, n + 1] := ones(size(u, 1)); for j in n:-1:1 loop V[:, j] := {u[i] * V[i, j + 1] for i in 1:size(u,1)}; end for; // Solve least squares problem p :=Modelica.Math.Matrices.leastSquares(V, y);end fitting;
Type | Name | Default | Description |
---|---|---|---|
Real | p[:] | Polynomial coefficients (p[1] is coefficient of highest power) | |
Real | u | Abszissa value | |
Real | du | Abszissa value |
Type | Name | Description |
---|---|---|
Real | dy | Value of polynomial at u |
function evaluate_der "Evaluate polynomial at a given abszissa value" extends Modelica.Icons.Function; input Real p[:] "Polynomial coefficients (p[1] is coefficient of highest power)"; input Real u "Abszissa value"; input Real du "Abszissa value"; output Real dy "Value of polynomial at u"; protected Integer n=size(p, 1); algorithm dy := p[1]*(n - 1); for j in 2:size(p, 1)-1 loop dy := p[j]*(n - j) + u*dy; end for; dy := dy*du; end evaluate_der;
Type | Name | Default | Description |
---|---|---|---|
Real | p[:] | Polynomial coefficients | |
Real | u_high | High integrand value | |
Real | u_low | 0 | Low integrand value, default 0 |
Real | du_high | High integrand value | |
Real | du_low | 0 | Low integrand value, default 0 |
Type | Name | Description |
---|---|---|
Real | dintegral | Integral of polynomial p from u_low to u_high |
function integralValue_der "Time derivative of integral of polynomial p(u) from u_low to u_high, assuming only u_high as time-dependent (Leibnitz rule)" extends Modelica.Icons.Function; input Real p[:] "Polynomial coefficients"; input Real u_high "High integrand value"; input Real u_low=0 "Low integrand value, default 0"; input Real du_high "High integrand value"; input Real du_low=0 "Low integrand value, default 0"; output Real dintegral=0.0 "Integral of polynomial p from u_low to u_high"; algorithm dintegral := evaluate(p,u_high)*du_high; end integralValue_der;
Type | Name | Default | Description |
---|---|---|---|
Real | p[:] | Polynomial coefficients (p[1] is coefficient of highest power) | |
Real | u | Abszissa value | |
Real | du | delta of abszissa value |
Type | Name | Description |
---|---|---|
Real | dy | time-derivative of derivative of polynomial w.r.t. input variable at u |
function derivativeValue_der "time derivative of derivative of polynomial" extends Modelica.Icons.Function; input Real p[:] "Polynomial coefficients (p[1] is coefficient of highest power)"; input Real u "Abszissa value"; input Real du "delta of abszissa value"; output Real dy "time-derivative of derivative of polynomial w.r.t. input variable at u"; protected Integer n=size(p, 1); algorithm dy := secondDerivativeValue(p,u)*du; end derivativeValue_der;