Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).
| Name | Description |
|---|---|
| Air damper with exponential opening characteristics | |
| VAV box with a fixed resistance plus a damper model withe exponential characteristics | |
| Outside air mixing box with interlocked air dampers | |
| Outside air mixing box with parallel damper for minimum outside air flow rate |
Buildings.Fluid.Actuators.Dampers.Exponential
y=0 means the damper is closed, and y=1 means the damper
is open. This is opposite of the implementation of ASHRAE 825-RP, but used here
for consistency within this library.
For yL < y < yU, the damper characteristics is
k = exp(a+b (1-y)).
Outside this range, the damper characteristic is defined by a quadratic polynomial that matches the damper resistance aty=0 and y=yL or y=yU and
y=1, respectively. In addition, the polynomials are such that k(y) is
differentiable in y and the derivative is continuous.
ASHRAE 825-RP lists the following parameter values as typical:
| opposed blades | single blades | |
| yL | 15/90 | 15/90 |
| yU | 55/90 | 65/90 |
| k0 | 1E6 | 1E6 |
| k1 | 0.2 to 0.5 | 0.2 to 0.5 |
| a | -1.51 | -1.51 |
| b | 0.105*90 | 0.0842*90 |
Extends from Buildings.Fluid.Actuators.BaseClasses.PartialDamperExponential (Partial model for air dampers with exponential opening characteristics).
| Type | Name | Default | Description |
|---|---|---|---|
| replaceable package Medium | PartialMedium | Medium in the component | |
| Boolean | use_deltaM | true | Set to true to use deltaM for turbulent transition, else ReC is used |
| Real | deltaM | 0.3 | Fraction of nominal mass flow rate where transition to turbulent occurs |
| Boolean | use_v_nominal | true | Set to true to use face velocity to compute area |
| Velocity | v_nominal | 1 | Nominal face velocity [m/s] |
| Area | A | m_flow_nominal/rho_nominal/v... | Face area [m2] |
| Boolean | roundDuct | false | Set to true for round duct, false for square cross section |
| Real | ReC | 4000 | Reynolds number where transition to turbulent starts |
| Real | kFixed | 0 | Flow coefficient of fixed resistance that may be in series with damper, k=m_flow/sqrt(dp), with unit=(kg.m)^(1/2). |
| Nominal condition | |||
| MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
| Pressure | dp_nominal | (m_flow_nominal/kDam_nominal... | Pressure drop at nominal mass flow rate [Pa] |
| Initialization | |||
| MassFlowRate | m_flow.start | 0 | Mass flow rate from port_a to port_b (m_flow > 0 is design flow direction) [kg/s] |
| Assumptions | |||
| Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) |
| Advanced | |||
| MassFlowRate | m_flow_small | 1E-4*abs(m_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
| Boolean | homotopyInitialization | true | = true, use homotopy method |
| Boolean | from_dp | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
| Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate |
| Boolean | use_constant_density | true | Set to true to use constant density for flow friction |
| Diagnostics | |||
| Boolean | show_V_flow | false | = true, if volume flow rate at inflowing port is computed |
| Boolean | show_T | false | = true, if actual temperature at port is computed (may lead to events) |
| Damper coefficients | |||
| Real | a | -1.51 | Coefficient a for damper characteristics |
| Real | b | 0.105*90 | Coefficient b for damper characteristics |
| Real | yL | 15/90 | Lower value for damper curve |
| Real | yU | 55/90 | Upper value for damper curve |
| Real | k0 | 1E6 | Flow coefficient for y=0, k0 = pressure drop divided by dynamic pressure |
| Real | k1 | 0.45 | Flow coefficient for y=1, k1 = pressure drop divided by dynamic pressure |
| Type | Name | Description |
|---|---|---|
| FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) |
| FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) |
| input RealInput | y | Actuator position (0: closed, 1: open) |
model Exponential
"Air damper with exponential opening characteristics"
extends Buildings.Fluid.Actuators.BaseClasses.PartialDamperExponential(
final dp_nominal=(m_flow_nominal/kDam_nominal)^2,
dp(nominal=10),
final kFixed=0);
protected
parameter Real kDam_nominal(fixed=false)
"Flow coefficient for damper, k=m_flow/sqrt(dp), with unit=(kg*m)^(1/2)";
parameter Real kThetaSqRt_nominal(min=0, fixed=false)
"Flow coefficient, kThetaSqRt = sqrt(pressure drop divided by dynamic pressure)";
initial algorithm
kThetaSqRt_nominal :=Buildings.Fluid.Actuators.BaseClasses.exponentialDamper(
y=1,
a=a,
b=b,
cL=cL,
cU=cU,
yL=yL,
yU=yU) "y=0 is closed";
assert(kThetaSqRt_nominal>0, "Flow coefficient must be strictly positive.");
kDam_nominal :=sqrt(2*rho_nominal)*A/kThetaSqRt_nominal
"flow coefficient for resistance base model, kDam=k=m_flow/sqrt(dp)";
end Exponential;
Buildings.Fluid.Actuators.Dampers.VAVBoxExponential
Model of two resistances in series. One resistance has a fixed flow coefficient, the other resistance is an air damper whose flow coefficient is an exponential function of the opening angle.
If dp_nominalIncludesDamper=true, then the parameter dp_nominal
is equal to the pressure drop of the damper plus the fixed flow resistance at the nominal
flow rate.
If dp_nominalIncludesDamper=false, then dp_nominal
does not include the flow resistance of the air damper.
Extends from Buildings.Fluid.Actuators.BaseClasses.PartialDamperExponential (Partial model for air dampers with exponential opening characteristics).
| Type | Name | Default | Description |
|---|---|---|---|
| replaceable package Medium | PartialMedium | Medium in the component | |
| Boolean | use_deltaM | true | Set to true to use deltaM for turbulent transition, else ReC is used |
| Real | deltaM | 0.3 | Fraction of nominal mass flow rate where transition to turbulent occurs |
| Boolean | use_v_nominal | true | Set to true to use face velocity to compute area |
| Velocity | v_nominal | 1 | Nominal face velocity [m/s] |
| Area | A | m_flow_nominal/rho_nominal/v... | Face area [m2] |
| Boolean | roundDuct | false | Set to true for round duct, false for square cross section |
| Real | ReC | 4000 | Reynolds number where transition to turbulent starts |
| Real | kFixed | sqrt(kResSqu) | Flow coefficient of fixed resistance that may be in series with damper, k=m_flow/sqrt(dp), with unit=(kg.m)^(1/2). |
| Nominal condition | |||
| MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
| Pressure | dp_nominal | Pressure drop at nominal mass flow rate [Pa] | |
| Boolean | dp_nominalIncludesDamper | true | set to true if dp_nominal includes the pressure loss of the open damper |
| Initialization | |||
| MassFlowRate | m_flow.start | 0 | Mass flow rate from port_a to port_b (m_flow > 0 is design flow direction) [kg/s] |
| Assumptions | |||
| Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) |
| Advanced | |||
| MassFlowRate | m_flow_small | 1E-4*abs(m_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
| Boolean | homotopyInitialization | true | = true, use homotopy method |
| Boolean | from_dp | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
| Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate |
| Boolean | use_constant_density | true | Set to true to use constant density for flow friction |
| Diagnostics | |||
| Boolean | show_V_flow | false | = true, if volume flow rate at inflowing port is computed |
| Boolean | show_T | false | = true, if actual temperature at port is computed (may lead to events) |
| Damper coefficients | |||
| Real | a | -1.51 | Coefficient a for damper characteristics |
| Real | b | 0.105*90 | Coefficient b for damper characteristics |
| Real | yL | 15/90 | Lower value for damper curve |
| Real | yU | 55/90 | Upper value for damper curve |
| Real | k0 | 1E6 | Flow coefficient for y=0, k0 = pressure drop divided by dynamic pressure |
| Real | k1 | 0.45 | Flow coefficient for y=1, k1 = pressure drop divided by dynamic pressure |
| Type | Name | Description |
|---|---|---|
| FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) |
| FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) |
| input RealInput | y | Actuator position (0: closed, 1: open) |
model VAVBoxExponential
"VAV box with a fixed resistance plus a damper model withe exponential characteristics"
extends Buildings.Fluid.Actuators.BaseClasses.PartialDamperExponential(
dp(nominal=dp_nominal),
final kFixed=sqrt(kResSqu));
parameter Boolean dp_nominalIncludesDamper = true
"set to true if dp_nominal includes the pressure loss of the open damper";
protected
parameter Modelica.SIunits.Pressure dpDamOpe_nominal = k1*m_flow_nominal^2/2/Medium.density(sta0)/A^2
"Pressure drop of fully open damper at nominal flow rate";
parameter Real kResSqu(unit="kg.m", fixed=false)
"Resistance coefficient for fixed resistance element";
initial equation
kResSqu = if dp_nominalIncludesDamper then
m_flow_nominal^2 / (dp_nominal-dpDamOpe_nominal) else
m_flow_nominal^2 / dp_nominal;
assert(kResSqu > 0,
"Wrong parameters in damper model: dp_nominal < dpDamOpe_nominal"
+ "\n dp_nominal = " + String(dp_nominal)
+ "\n dpDamOpe_nominal = " + String(dpDamOpe_nominal));
end VAVBoxExponential;
Buildings.Fluid.Actuators.Dampers.MixingBox
Model of an outside air mixing box with air dampers.
Set y=0 to close the outside air and exhast air dampers.
If dp_nominalIncludesDamper=true, then the parameter dp_nominal
is equal to the pressure drop of the damper plus the fixed flow resistance at the nominal
flow rate.
If dp_nominalIncludesDamper=false, then dp_nominal
does not include the flow resistance of the air damper.
Extends from Buildings.BaseClasses.BaseIconLow (Base icon with model name below the icon).
| Type | Name | Default | Description |
|---|---|---|---|
| Boolean | use_deltaM | true | Set to true to use deltaM for turbulent transition, else ReC is used |
| Real | deltaM | 0.3 | Fraction of nominal mass flow rate where transition to turbulent occurs |
| Boolean | use_v_nominal | true | Set to true to use face velocity to compute area |
| Velocity | v_nominal | 1 | Nominal face velocity [m/s] |
| Boolean | roundDuct | false | Set to true for round duct, false for square cross section |
| Real | ReC | 4000 | Reynolds number where transition to turbulent starts |
| Area | AOut | mOut_flow_nominal/rho_nomina... | Face area outside air damper [m2] |
| Area | AExh | mExh_flow_nominal/rho_nomina... | Face area exhaust air damper [m2] |
| Area | ARec | mRec_flow_nominal/rho_nomina... | Face area recirculation air damper [m2] |
| Nominal condition | |||
| Boolean | dp_nominalIncludesDamper | false | set to true if dp_nominal includes the pressure loss of the open damper |
| MassFlowRate | mOut_flow_nominal | Mass flow rate outside air damper [kg/s] | |
| Pressure | dpOut_nominal | Pressure drop outside air leg [Pa] | |
| MassFlowRate | mRec_flow_nominal | Mass flow rate recirculation air damper [kg/s] | |
| Pressure | dpRec_nominal | Pressure drop recirculation air leg [Pa] | |
| MassFlowRate | mExh_flow_nominal | Mass flow rate exhaust air damper [kg/s] | |
| Pressure | dpExh_nominal | Pressure drop exhaust air leg [Pa] | |
| Assumptions | |||
| Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) |
| Advanced | |||
| MassFlowRate | m_flow_small | 1E-4*mOut_flow_nominal | Small mass flow rate for regularization of zero flow [kg/s] |
| Boolean | from_dp | true | = true, use m_flow = f(dp) else dp = f(m_flow) |
| Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate |
| Boolean | use_constant_density | true | Set to true to use constant density for flow friction |
| Damper coefficients | |||
| Real | a | -1.51 | Coefficient a for damper characteristics |
| Real | b | 0.105*90 | Coefficient b for damper characteristics |
| Real | yL | 15/90 | Lower value for damper curve |
| Real | yU | 55/90 | Upper value for damper curve |
| Real | k0 | 1E6 | Flow coefficient for y=0, k0 = pressure drop divided by dynamic pressure |
| Real | k1 | 0.45 | Flow coefficient for y=1, k1 = pressure drop divided by dynamic pressure |
| Type | Name | Description |
|---|---|---|
| FluidPort_a | port_Out | Fluid connector a (positive design flow direction is from port_a to port_b) |
| FluidPort_b | port_Exh | Fluid connector b (positive design flow direction is from port_a to port_b) |
| FluidPort_a | port_Ret | Fluid connector a (positive design flow direction is from port_a to port_b) |
| FluidPort_b | port_Sup | Fluid connector b (positive design flow direction is from port_a to port_b) |
| input RealInput | y | Damper position (0: closed, 1: open) |
model MixingBox "Outside air mixing box with interlocked air dampers"
extends Buildings.BaseClasses.BaseIconLow;
outer Modelica.Fluid.System system "System wide properties";
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium "Medium in the component";
import Modelica.Constants;
parameter Boolean allowFlowReversal = system.allowFlowReversal
"= true to allow flow reversal, false restricts to design direction (port_a -> port_b)";
VAVBoxExponential damOA(A=AOut,
redeclare package Medium = Medium,
dp_nominal=dpOut_nominal,
dp_nominalIncludesDamper=dp_nominalIncludesDamper,
from_dp=from_dp,
linearized=linearized,
use_deltaM=use_deltaM,
deltaM=deltaM,
use_v_nominal=use_v_nominal,
v_nominal=v_nominal,
roundDuct=roundDuct,
ReC=ReC,
m_flow_small=m_flow_small,
a=a,
b=b,
yL=yL,
yU=yU,
k0=k0,
k1=k1,
use_constant_density=use_constant_density,
allowFlowReversal=allowFlowReversal,
m_flow_nominal=mOut_flow_nominal);
parameter Boolean use_deltaM = true
"Set to true to use deltaM for turbulent transition, else ReC is used";
parameter Real deltaM = 0.3
"Fraction of nominal mass flow rate where transition to turbulent occurs";
parameter Boolean use_v_nominal = true
"Set to true to use face velocity to compute area";
parameter Modelica.SIunits.Velocity v_nominal=1 "Nominal face velocity";
parameter Boolean roundDuct = false
"Set to true for round duct, false for square cross section";
parameter Real ReC=4000
"Reynolds number where transition to turbulent starts";
parameter Modelica.SIunits.Area AOut=mOut_flow_nominal/rho_nominal/v_nominal
"Face area outside air damper";
VAVBoxExponential damExh( A=AExh,
redeclare package Medium = Medium,
m_flow_nominal=mExh_flow_nominal,
dp_nominal=dpExh_nominal,
dp_nominalIncludesDamper=dp_nominalIncludesDamper,
from_dp=from_dp,
linearized=linearized,
use_deltaM=use_deltaM,
deltaM=deltaM,
use_v_nominal=use_v_nominal,
v_nominal=v_nominal,
roundDuct=roundDuct,
ReC=ReC,
m_flow_small=m_flow_small,
a=a,
b=b,
yL=yL,
yU=yU,
k0=k0,
k1=k1,
use_constant_density=use_constant_density,
allowFlowReversal=allowFlowReversal) "Exhaust air damper";
parameter Modelica.SIunits.Area AExh=mExh_flow_nominal/rho_nominal/v_nominal
"Face area exhaust air damper";
VAVBoxExponential damRec( A=ARec,
redeclare package Medium = Medium,
m_flow_nominal=mRec_flow_nominal,
dp_nominal=dpRec_nominal,
dp_nominalIncludesDamper=dp_nominalIncludesDamper,
from_dp=from_dp,
linearized=linearized,
use_deltaM=use_deltaM,
deltaM=deltaM,
use_v_nominal=use_v_nominal,
v_nominal=v_nominal,
roundDuct=roundDuct,
ReC=ReC,
m_flow_small=m_flow_small,
a=a,
b=b,
yL=yL,
yU=yU,
k0=k0,
k1=k1,
use_constant_density=use_constant_density,
allowFlowReversal=allowFlowReversal) "Recirculation air damper";
parameter Modelica.SIunits.Area ARec=mRec_flow_nominal/rho_nominal/v_nominal
"Face area recirculation air damper";
parameter Boolean dp_nominalIncludesDamper=false
"set to true if dp_nominal includes the pressure loss of the open damper";
parameter Modelica.SIunits.MassFlowRate mOut_flow_nominal
"Mass flow rate outside air damper";
parameter Modelica.SIunits.Pressure dpOut_nominal(min=0, displayUnit="Pa")
"Pressure drop outside air leg";
parameter Modelica.SIunits.MassFlowRate mRec_flow_nominal
"Mass flow rate recirculation air damper";
parameter Modelica.SIunits.Pressure dpRec_nominal(min=0, displayUnit="Pa")
"Pressure drop recirculation air leg";
parameter Modelica.SIunits.MassFlowRate mExh_flow_nominal
"Mass flow rate exhaust air damper";
parameter Modelica.SIunits.Pressure dpExh_nominal(min=0, displayUnit="Pa")
"Pressure drop exhaust air leg";
parameter Modelica.Media.Interfaces.PartialMedium.MassFlowRate m_flow_small=1E-4
*mOut_flow_nominal "Small mass flow rate for regularization of zero flow";
parameter Boolean from_dp=true
"= true, use m_flow = f(dp) else dp = f(m_flow)";
parameter Boolean linearized=false
"= true, use linear relation between m_flow and dp for any flow rate";
parameter Boolean use_constant_density=true
"Set to true to use constant density for flow friction";
parameter Real a=-1.51 "Coefficient a for damper characteristics";
parameter Real b=0.105*90 "Coefficient b for damper characteristics";
parameter Real yL=15/90 "Lower value for damper curve";
parameter Real yU=55/90 "Upper value for damper curve";
parameter Real k0=1E6
"Flow coefficient for y=0, k0 = pressure drop divided by dynamic pressure";
parameter Real k1=0.45
"Flow coefficient for y=1, k1 = pressure drop divided by dynamic pressure";
Modelica.Fluid.Interfaces.FluidPort_a port_Out(redeclare package Medium =
Medium, m_flow(start=0, min=if allowFlowReversal then -Constants.inf else
0))
"Fluid connector a (positive design flow direction is from port_a to port_b)";
Modelica.Fluid.Interfaces.FluidPort_b port_Exh(redeclare package Medium =
Medium, m_flow(start=0, max=if allowFlowReversal then +Constants.inf else
0))
"Fluid connector b (positive design flow direction is from port_a to port_b)";
Modelica.Fluid.Interfaces.FluidPort_a port_Ret(redeclare package Medium =
Medium, m_flow(start=0, min=if allowFlowReversal then -Constants.inf else
0))
"Fluid connector a (positive design flow direction is from port_a to port_b)";
Modelica.Fluid.Interfaces.FluidPort_b port_Sup(redeclare package Medium =
Medium, m_flow(start=0, max=if allowFlowReversal then +Constants.inf else
0))
"Fluid connector b (positive design flow direction is from port_a to port_b)";
Modelica.Blocks.Interfaces.RealInput y "Damper position (0: closed, 1: open)";
Modelica.Blocks.Sources.Constant uni(k=1) "Unity signal";
Modelica.Blocks.Math.Add add(k2=-1);
protected
parameter Medium.Density rho_nominal=Medium.density(sta_nominal)
"Density, used to compute fluid volume";
parameter Medium.ThermodynamicState sta_nominal=
Medium.setState_pTX(T=Medium.T_default, p=Medium.p_default, X=Medium.X_default);
equation
connect(y, damOA.y);
connect(y, damExh.y);
connect(uni.y, add.u1);
connect(y, add.u2);
connect(add.y, damRec.y);
connect(damOA.port_a, port_Out);
connect(damExh.port_b, port_Exh);
connect(port_Sup, damOA.port_b);
connect(damRec.port_b, port_Sup);
connect(port_Ret, damExh.port_a);
connect(port_Ret, damRec.port_a);
end MixingBox;
Buildings.Fluid.Actuators.Dampers.MixingBoxMinimumFlow
Model of an outside air mixing box with air dampers and a flow path for the minimum outside air flow rate.
If dp_nominalIncludesDamper=true, then the parameter dp_nominal
is equal to the pressure drop of the damper plus the fixed flow resistance at the nominal
flow rate.
If dp_nominalIncludesDamper=false, then dp_nominal
does not include the flow resistance of the air damper.
Extends from Buildings.Fluid.Actuators.Dampers.MixingBox (Outside air mixing box with interlocked air dampers).
| Type | Name | Default | Description |
|---|---|---|---|
| replaceable package Medium | PartialMedium | Medium in the component | |
| Boolean | use_deltaM | true | Set to true to use deltaM for turbulent transition, else ReC is used |
| Real | deltaM | 0.3 | Fraction of nominal mass flow rate where transition to turbulent occurs |
| Boolean | use_v_nominal | true | Set to true to use face velocity to compute area |
| Velocity | v_nominal | 1 | Nominal face velocity [m/s] |
| Boolean | roundDuct | false | Set to true for round duct, false for square cross section |
| Real | ReC | 4000 | Reynolds number where transition to turbulent starts |
| Area | AOut | mOut_flow_nominal/rho_nomina... | Face area outside air damper [m2] |
| Area | AExh | mExh_flow_nominal/rho_nomina... | Face area exhaust air damper [m2] |
| Area | ARec | mRec_flow_nominal/rho_nomina... | Face area recirculation air damper [m2] |
| Area | AOutMin | Face area minimum outside air damper [m2] | |
| Nominal condition | |||
| Boolean | dp_nominalIncludesDamper | false | set to true if dp_nominal includes the pressure loss of the open damper |
| MassFlowRate | mOut_flow_nominal | Mass flow rate outside air damper [kg/s] | |
| Pressure | dpOut_nominal | Pressure drop outside air leg [Pa] | |
| MassFlowRate | mRec_flow_nominal | Mass flow rate recirculation air damper [kg/s] | |
| Pressure | dpRec_nominal | Pressure drop recirculation air leg [Pa] | |
| MassFlowRate | mExh_flow_nominal | Mass flow rate exhaust air damper [kg/s] | |
| Pressure | dpExh_nominal | Pressure drop exhaust air leg [Pa] | |
| MassFlowRate | mOutMin_flow_nominal | Mass flow rate minimum outside air damper [kg/s] | |
| Pressure | dpOutMin_nominal | Pressure drop minimum outside air leg [Pa] | |
| Assumptions | |||
| Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) |
| Advanced | |||
| MassFlowRate | m_flow_small | 1E-4*mOut_flow_nominal | Small mass flow rate for regularization of zero flow [kg/s] |
| Boolean | from_dp | true | = true, use m_flow = f(dp) else dp = f(m_flow) |
| Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate |
| Boolean | use_constant_density | true | Set to true to use constant density for flow friction |
| Damper coefficients | |||
| Real | a | -1.51 | Coefficient a for damper characteristics |
| Real | b | 0.105*90 | Coefficient b for damper characteristics |
| Real | yL | 15/90 | Lower value for damper curve |
| Real | yU | 55/90 | Upper value for damper curve |
| Real | k0 | 1E6 | Flow coefficient for y=0, k0 = pressure drop divided by dynamic pressure |
| Real | k1 | 0.45 | Flow coefficient for y=1, k1 = pressure drop divided by dynamic pressure |
| Type | Name | Description |
|---|---|---|
| FluidPort_a | port_Out | Fluid connector a (positive design flow direction is from port_a to port_b) |
| FluidPort_b | port_Exh | Fluid connector b (positive design flow direction is from port_a to port_b) |
| FluidPort_a | port_Ret | Fluid connector a (positive design flow direction is from port_a to port_b) |
| FluidPort_b | port_Sup | Fluid connector b (positive design flow direction is from port_a to port_b) |
| input RealInput | y | Damper position (0: closed, 1: open) |
| FluidPort_a | port_OutMin | Fluid connector a (positive design flow direction is from port_a to port_b) |
| input RealInput | yOutMin | Damper position minimum outside air (0: closed, 1: open) |
model MixingBoxMinimumFlow
"Outside air mixing box with parallel damper for minimum outside air flow rate"
extends Buildings.Fluid.Actuators.Dampers.MixingBox;
import Modelica.Constants;
parameter Modelica.SIunits.Area AOutMin
"Face area minimum outside air damper";
parameter Modelica.SIunits.MassFlowRate mOutMin_flow_nominal
"Mass flow rate minimum outside air damper";
parameter Modelica.SIunits.Pressure dpOutMin_nominal(min=0, displayUnit="Pa")
"Pressure drop minimum outside air leg";
Modelica.Fluid.Interfaces.FluidPort_a port_OutMin(redeclare package Medium =
Medium, m_flow(start=0, min=if allowFlowReversal then -Constants.inf else
0))
"Fluid connector a (positive design flow direction is from port_a to port_b)";
Modelica.Blocks.Interfaces.RealInput yOutMin
"Damper position minimum outside air (0: closed, 1: open)";
VAVBoxExponential damOAMin(
redeclare package Medium = Medium,
dp_nominalIncludesDamper=dp_nominalIncludesDamper,
from_dp=from_dp,
linearized=linearized,
use_deltaM=use_deltaM,
deltaM=deltaM,
use_v_nominal=use_v_nominal,
v_nominal=v_nominal,
roundDuct=roundDuct,
ReC=ReC,
m_flow_small=m_flow_small,
a=a,
b=b,
yL=yL,
yU=yU,
k0=k0,
k1=k1,
use_constant_density=use_constant_density,
allowFlowReversal=allowFlowReversal,
m_flow_nominal=mOutMin_flow_nominal,
dp_nominal=dpOutMin_nominal,
A=AOutMin) "Damper for minimum outside air intake";
equation
connect(port_OutMin, damOAMin.port_a);
connect(damOAMin.port_b, port_Sup);
connect(yOutMin, damOAMin.y);
end MixingBoxMinimumFlow;