Extends from Modelica.Fluid.Icons.BaseClassLibrary (Icon for library).
| Name | Description | 
|---|---|
| Flow models for pressure drop calculations | |
| Partial model for a hydraulic resistance | |
| Flow splitter with partial resistance model at each port | 
Buildings.Fluid.BaseClasses.PartialResistance
Partial model for a flow resistance, possible with variable flow coefficient. The pressure drop is computed by an instance of Buildings.Fluid.BaseClasses.FlowModels.BasicFlowModel, i.e., using a regularized implementation of the equation
m_flow = sign(dp) * k * sqrt(|dp|).
Extends from Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface (Partial model transporting fluid between two ports without storing mass or energy).
| Type | Name | Default | Description | 
|---|---|---|---|
| replaceable package Medium | PartialMedium | Medium in the component | |
| Nominal condition | |||
| MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
| Pressure | dp_nominal | Pressure drop at nominal mass flow rate [Pa] | |
| Initialization | |||
| MassFlowRate | m_flow.start | 0 | Mass flow rate from port_a to port_b (m_flow > 0 is design flow direction) [kg/s] | 
| Pressure | dp.start | 0 | Pressure difference between port_a and port_b [Pa] | 
| Assumptions | |||
| Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) | 
| Advanced | |||
| MassFlowRate | m_flow_small | 1E-4*m_flow_nominal | Small mass flow rate for regularization of zero flow [kg/s] | 
| Boolean | from_dp | false | = true, use m_flow = f(dp) else dp = f(m_flow) | 
| Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate | 
| Diagnostics | |||
| Boolean | show_V_flow | false | = true, if volume flow rate at inflowing port is computed | 
| Boolean | show_T | false | = true, if actual temperature at port is computed (may lead to events) | 
| Type | Name | Description | 
|---|---|---|
| FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) | 
| FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) | 
partial model PartialResistance 
  "Partial model for a hydraulic resistance"
    extends Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface(
     show_T=false, show_V_flow=false);
  parameter Boolean from_dp = false 
    "= true, use m_flow = f(dp) else dp = f(m_flow)";
  parameter Medium.MassFlowRate m_flow_nominal(min=0) "Nominal mass flow rate";
  parameter Modelica.SIunits.Pressure dp_nominal(min=0, displayUnit="Pa") 
    "Pressure drop at nominal mass flow rate";
  parameter Boolean linearized = false 
    "= true, use linear relation between m_flow and dp for any flow rate";
  Real k(unit="") "Flow coefficient, k=m_flow/sqrt(dp), with unit=(kg.m)^(1/2)";
  Medium.MassFlowRate m_flow_turbulent 
    "Turbulent flow if |m_flow| >= m_flow_turbulent, not a parameter because k can be a function of time";
//  Modelica.SIunits.Pressure dp_turbulent
//    "Turbulent flow if |dp| >= dp_small, not a parameter because k can be a function of time";
protected 
  parameter Medium.ThermodynamicState sta0=
     Medium.setState_pTX(T=Medium.T_default, p=Medium.p_default, X=Medium.X_default);
  parameter Modelica.SIunits.DynamicViscosity eta_nominal=Medium.dynamicViscosity(sta0) 
    "Dynamic viscosity, used to compute transition to turbulent flow regime";
  parameter Modelica.SIunits.SpecificEnthalpy h0=Medium.h_default 
    "Initial value for solver for specific enthalpy";           //specificEnthalpy(sta0)
 constant Real conv(unit="m.s2/kg") = 1 "Factor, needed to satisfy unit check";
 constant Real conv2 = sqrt(conv) "Factor, needed to satisfy unit check";
 final parameter Boolean computeFlowResistance=(dp_nominal > Modelica.Constants.eps) 
    "Flag to enable/disable computation of flow resistance";
equation 
  // Pressure drop calculation
  if computeFlowResistance then
    if from_dp then
      m_flow=FlowModels.basicFlowFunction_dp(dp=dp, k=k, m_flow_turbulent=m_flow_turbulent, linearized=linearized);
    else
      dp=FlowModels.basicFlowFunction_m_flow(m_flow=m_flow, k=k, m_flow_turbulent=m_flow_turbulent, linearized=linearized);
    end if;
  else
    dp = 0;
  end if;
  // Isenthalpic state transformation (no storage and no loss of energy)
  port_a.h_outflow = inStream(port_b.h_outflow);
  port_b.h_outflow = inStream(port_a.h_outflow);
  // Mass balance (no storage)
  port_a.m_flow + port_b.m_flow = 0;
  // Transport of substances
  port_a.Xi_outflow = inStream(port_b.Xi_outflow);
  port_b.Xi_outflow = inStream(port_a.Xi_outflow);
  port_a.C_outflow = inStream(port_b.C_outflow);
  port_b.C_outflow = inStream(port_a.C_outflow);
end PartialResistance;
 
Buildings.Fluid.BaseClasses.PartialThreeWayResistance
Partial model for flow resistances with three ports such as a flow mixer/splitter or a three way valve.
If dynamicBalance=true, then at the junction of the three flows,
a mixing volume will be present. This will introduce a dynamic energy and momentum
balance, which often breaks algebraic loops. 
The time constant of the mixing volume is determined by the parameter tau.
| Type | Name | Default | Description | 
|---|---|---|---|
| PartialStaticTwoPortInterface | res1 | redeclare Buildings.Fluid.In... | Partial model, to be replaced with a fluid component | 
| PartialStaticTwoPortInterface | res2 | redeclare Buildings.Fluid.In... | Partial model, to be replaced with a fluid component | 
| PartialStaticTwoPortInterface | res3 | redeclare Buildings.Fluid.In... | Partial model, to be replaced with a fluid component | 
| Advanced | |||
| Boolean | from_dp | true | = true, use m_flow = f(dp) else dp = f(m_flow) | 
| Assumptions | |||
| Dynamics | |||
| Boolean | dynamicBalance | true | Set to true to use a dynamic balance, which often leads to smaller systems of equations | 
| Time | tau | 10 | Time constant at nominal flow for dynamic energy and momentum balance [s] | 
| MassFlowRate | mDyn_flow_nominal | Nominal mass flow rate for dynamic momentum and energy balance [kg/s] | |
| Dynamics | energyDynamics | system.energyDynamics | Formulation of energy balance | 
| Dynamics | massDynamics | system.massDynamics | Formulation of mass balance | 
| Initialization | |||
| AbsolutePressure | p_start | Medium.p_default | Start value of pressure [Pa] | 
| Boolean | use_T_start | true | = true, use T_start, otherwise h_start | 
| Temperature | T_start | if use_T_start then Medium.T... | Start value of temperature [K] | 
| SpecificEnthalpy | h_start | if use_T_start then Medium.s... | Start value of specific enthalpy [J/kg] | 
| MassFraction | X_start[Medium.nX] | Medium.X_default | Start value of mass fractions m_i/m [kg/kg] | 
| ExtraProperty | C_start[Medium.nC] | fill(0, Medium.nC) | Start value of trace substances | 
| Type | Name | Description | 
|---|---|---|
| FluidPort_a | port_1 | |
| FluidPort_b | port_2 | |
| FluidPort_a | port_3 | 
partial model PartialThreeWayResistance 
  "Flow splitter with partial resistance model at each port"
  outer Modelica.Fluid.System system "System properties";
  replaceable package Medium = Modelica.Media.Interfaces.PartialMedium 
    "Fluid medium model";
  Modelica.Fluid.Interfaces.FluidPort_a port_1(redeclare package Medium =
        Medium, m_flow(min=if (portFlowDirection_1 == Modelica.Fluid.Types.PortFlowDirection.Entering) then 
                0.0 else -Modelica.Constants.inf, max=if (portFlowDirection_1
           == Modelica.Fluid.Types.PortFlowDirection.Leaving) then 0.0 else Modelica.Constants.inf));
  Modelica.Fluid.Interfaces.FluidPort_b port_2(redeclare package Medium =
        Medium, m_flow(min=if (portFlowDirection_2 == Modelica.Fluid.Types.PortFlowDirection.Entering) then 
                0.0 else -Modelica.Constants.inf, max=if (portFlowDirection_2
           == Modelica.Fluid.Types.PortFlowDirection.Leaving) then 0.0 else Modelica.Constants.inf));
  Modelica.Fluid.Interfaces.FluidPort_a port_3(
    redeclare package Medium=Medium,
    m_flow(min=if (portFlowDirection_3==Modelica.Fluid.Types.PortFlowDirection.Entering) then 0.0 else -Modelica.Constants.inf,
    max=if (portFlowDirection_3==Modelica.Fluid.Types.PortFlowDirection.Leaving) then 0.0 else Modelica.Constants.inf)); 
 parameter Boolean from_dp = true 
    "= true, use m_flow = f(dp) else dp = f(m_flow)";
  replaceable Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface res1(redeclare 
      package Medium = Medium, allowFlowReversal=true) 
    "Partial model, to be replaced with a fluid component";
  replaceable Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface res2(redeclare 
      package Medium = Medium, allowFlowReversal=true) 
    "Partial model, to be replaced with a fluid component";
  replaceable Buildings.Fluid.Interfaces.PartialStaticTwoPortInterface res3(redeclare 
      package Medium = Medium, allowFlowReversal=true) 
    "Partial model, to be replaced with a fluid component"; 
protected 
  parameter Modelica.Fluid.Types.PortFlowDirection portFlowDirection_1=Modelica.Fluid.Types.PortFlowDirection.Bidirectional 
    "Flow direction for port_1";
  parameter Modelica.Fluid.Types.PortFlowDirection portFlowDirection_2=Modelica.Fluid.Types.PortFlowDirection.Bidirectional 
    "Flow direction for port_2";
  parameter Modelica.Fluid.Types.PortFlowDirection portFlowDirection_3=Modelica.Fluid.Types.PortFlowDirection.Bidirectional 
    "Flow direction for port_3";
public 
  Delays.DelayFirstOrder vol(
    redeclare package Medium = Medium,
    nPorts=3,
    use_HeatTransfer=false,
    tau=tau,
    m_flow_nominal=mDyn_flow_nominal,
    energyDynamics=energyDynamics,
    massDynamics=massDynamics,
    p_start=p_start,
    use_T_start=use_T_start,
    T_start=T_start,
    h_start=h_start,
    X_start=X_start,
    C_start=C_start) if 
       dynamicBalance "Fluid volume to break algebraic loop"; 
  parameter Boolean dynamicBalance = true 
    "Set to true to use a dynamic balance, which often leads to smaller systems of equations";
  parameter Modelica.SIunits.Time tau=10 
    "Time constant at nominal flow for dynamic energy and momentum balance";
  parameter Modelica.SIunits.MassFlowRate mDyn_flow_nominal 
    "Nominal mass flow rate for dynamic momentum and energy balance";
  parameter Modelica.Fluid.Types.Dynamics energyDynamics=system.energyDynamics 
    "Formulation of energy balance";
  parameter Modelica.Fluid.Types.Dynamics massDynamics=system.massDynamics 
    "Formulation of mass balance";
  parameter Modelica.Media.Interfaces.PartialMedium.AbsolutePressure p_start=
      Medium.p_default "Start value of pressure";
  parameter Boolean use_T_start=true "= true, use T_start, otherwise h_start";
  parameter Modelica.Media.Interfaces.PartialMedium.Temperature T_start=if 
      use_T_start then Medium.T_default else Medium.temperature_phX(
      p_start,
      h_start,
      X_start) "Start value of temperature";
  parameter Modelica.Media.Interfaces.PartialMedium.SpecificEnthalpy h_start=
      if use_T_start then Medium.specificEnthalpy_pTX(
      p_start,
      T_start,
      X_start) else Medium.h_default "Start value of specific enthalpy";
  parameter Modelica.Media.Interfaces.PartialMedium.MassFraction X_start[Medium.nX]=
     Medium.X_default "Start value of mass fractions m_i/m";
  parameter Modelica.Media.Interfaces.PartialMedium.ExtraProperty C_start[
    Medium.nC]=fill(0, Medium.nC) "Start value of trace substances";
equation 
  connect(port_1, res1.port_a);
  connect(res2.port_a, port_2);
  connect(res3.port_a, port_3);
  connect(res1.port_b,vol. ports[1]);
  connect(res2.port_b,vol. ports[2]);
  connect(res3.port_b,vol. ports[3]); 
  if not dynamicBalance then
    connect(res1.port_b, res3.port_b);
    connect(res1.port_b, res2.port_b); 
  end if;
end PartialThreeWayResistance;