Name | Description |
---|---|
BaseClasses | Library with base classes for psychrometric classes |
DewPointTemperature_pWat | Model to compute the dew point temperature of moist air |
Examples | Collection of models that illustrate model use and test models |
HumidityRatio_pWat | Humidity ratio for given water vapor pressure |
VaporPressure_TDP | Model to compute the water vapor pressure for a given dew point temperature of moist air |
VaporPressure_X | Water vapor pressure for given humidity ratio |
WetBulbTemperature | Model to compute the wet bulb temperature |
Dew point temperature calculation for moist air above freezing temperature.
The correlation used in this model is valid for dew point temperatures between 0 degC and 200 degC. It is the correlation from 2005 ASHRAE Handbook, p. 6.2. In an earlier version of this model, the equation from Peppers has been used, but this equation yielded about 15 Kelvin lower dew point temperatures.
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
output RealOutput | p_w | Water vapor partial pressure |
input RealInput | T | Dew point temperature [K] |
block DewPointTemperature_pWat "Model to compute the dew point temperature of moist air" extends Modelica.Blocks.Interfaces.BlockIcon; Modelica.Blocks.Interfaces.RealOutput p_w "Water vapor partial pressure"; Modelica.Blocks.Interfaces.RealInput T(final quantity="ThermodynamicTemperature", final unit="K", min = 0, displayUnit="degC") "Dew point temperature"; equation p_w = Buildings.Utilities.Psychrometrics.BaseClasses.dewPointTemperature(T=T); end DewPointTemperature_pWat;
Block to compute the humidity ratio for a given water vapor partial pressure. of moist air.
If use_p_in is false (default option), the p parameter is used as atmospheric pressure, and the p_in input connector is disabled; if use_p_in is true, then the p parameter is ignored, and the value provided by the input connector is used instead.
Extends from Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure (Humidity ratio for given water vapor pressure).
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_p_in | true | Get the pressure from the input connector |
Pressure | p | 101325 | Fixed value of pressure [Pa] |
Initialization | |||
MassFraction | X_dryAir.start | 0.001 | Water mass fraction per mass of dry air [1] |
Type | Name | Description |
---|---|---|
input RealInput | p_in | Atmospheric Pressure [Pa] |
output RealOutput | XWat | Species concentration at dry bulb temperature |
input RealInput | p_w | Water vapor pressure [Pa] |
block HumidityRatio_pWat "Humidity ratio for given water vapor pressure" extends Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure; Modelica.Blocks.Interfaces.RealOutput XWat(min=0, max=1, nominal=0.01) "Species concentration at dry bulb temperature"; Modelica.Blocks.Interfaces.RealInput p_w(final quantity="Pressure", final unit="Pa", displayUnit="Pa", min = 0) "Water vapor pressure"; equation X_dryAir * (1-XWat) = XWat; ( p_in_internal - p_w) * X_dryAir = 0.62198 * p_w; end HumidityRatio_pWat;
Dew point temperature calculation for moist air above freezing temperature.
The correlation used in this model is valid for dew point temperatures between 0 degC and 200 degC. It is the correlation from 2005 ASHRAE Handbook, p. 6.2. In an earlier version of this model, the equation from Peppers has been used, but this equation yielded about 15 Kelvin lower dew point temperatures.
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
input RealInput | p_w | Water vapor partial pressure |
output RealOutput | T | Dew point temperature [K] |
block VaporPressure_TDP "Model to compute the water vapor pressure for a given dew point temperature of moist air" extends Modelica.Blocks.Interfaces.BlockIcon; Modelica.Blocks.Interfaces.RealInput p_w "Water vapor partial pressure"; Modelica.Blocks.Interfaces.RealOutput T(start=278.15, final quantity="ThermodynamicTemperature", final unit="K", min = 0, displayUnit="degC") "Dew point temperature"; equation p_w = Buildings.Utilities.Psychrometrics.BaseClasses.dewPointTemperature(T=T); end VaporPressure_TDP;
Block to compute the water vapor partial pressure for a given humidity ratio.
If use_p_in is false (default option), the p parameter is used as atmospheric pressure, and the p_in input connector is disabled; if use_p_in is true, then the p parameter is ignored, and the value provided by the input connector is used instead.
Extends from Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure (Humidity ratio for given water vapor pressure).
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_p_in | true | Get the pressure from the input connector |
Pressure | p | 101325 | Fixed value of pressure [Pa] |
Initialization | |||
MassFraction | X_dryAir.start | 0.001 | Water mass fraction per mass of dry air [1] |
Type | Name | Description |
---|---|---|
input RealInput | p_in | Atmospheric Pressure [Pa] |
input RealInput | XWat | Species concentration at dry bulb temperature |
output RealOutput | p_w | Water vapor pressure [Pa] |
block VaporPressure_X "Water vapor pressure for given humidity ratio" extends Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure; Modelica.Blocks.Interfaces.RealInput XWat(min=0, max=1, nominal=0.01) "Species concentration at dry bulb temperature"; Modelica.Blocks.Interfaces.RealOutput p_w(final quantity="Pressure", final unit="Pa", displayUnit="Pa", min = 0) "Water vapor pressure"; equation X_dryAir * (1-XWat) = XWat; ( p_in_internal - p_w) * X_dryAir = 0.62198 * p_w; end VaporPressure_X;
Given a moist are medium model, this component computes the states of the medium at its wet bulb temperature.
For a use of this model, see for example Buildings.Fluids.Sensors.WetBulbTemperature
Extends from Buildings.BaseClasses.BaseIcon (Base icon).
Type | Name | Description |
---|---|---|
RealSignal | TDryBul | Dry bulb temperature [K] |
RealSignal | p | Pressure [Pa] |
RealSignal | TWetBul | Wet bulb temperature [K] |
RealSignal | Xi[Medium.nXi] | Species concentration at dry bulb temperature |
RealSignal | phi | Relative humidity (at dry-bulb state) in [0, 1] |
model WetBulbTemperature "Model to compute the wet bulb temperature" extends Buildings.BaseClasses.BaseIcon; replaceable package Medium = Modelica.Media.Interfaces.PartialCondensingGases "Medium model"; Medium.BaseProperties dryBul "Medium state at dry bulb temperature"; Medium.BaseProperties wetBul(Xi(nominal=0.01*ones(Medium.nXi))) "Medium state at wet bulb temperature"; ObsoleteModelica3.Blocks.Interfaces.RealSignal TDryBul( start=303, final quantity="ThermodynamicTemperature", final unit="K", min = 0) "Dry bulb temperature"; ObsoleteModelica3.Blocks.Interfaces.RealSignal p( final quantity="Pressure", final unit="Pa", min = 0) "Pressure"; ObsoleteModelica3.Blocks.Interfaces.RealSignal TWetBul( start=293, final quantity="ThermodynamicTemperature", final unit="K", min = 0) "Wet bulb temperature"; ObsoleteModelica3.Blocks.Interfaces.RealSignal Xi[ Medium.nXi] "Species concentration at dry bulb temperature"; ObsoleteModelica3.Blocks.Interfaces.RealSignal phi "Relative humidity (at dry-bulb state) in [0, 1]"; protected parameter Integer iWat(min=1, fixed=false) "Index for water vapor concentration"; initial algorithm iWat :=1; for i in 1:Medium.nC loop if ( Modelica.Utilities.Strings.isEqual(Medium.extraPropertiesNames[i], "Water")) then iWat := i; end if; end for; equation dryBul.p = p; dryBul.T = TDryBul; dryBul.Xi = Xi; wetBul.phi = 1; wetBul.p = dryBul.p; wetBul.h = dryBul.h + (wetBul.X[iWat] - dryBul.X[iWat]) * Medium.enthalpyOfLiquid(dryBul.T); TWetBul = wetBul.T; phi = dryBul.phi; end WetBulbTemperature;