This package contains examples for the use of models that can be found in Buildings.Fluid.Chillers.
Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).
| Name | Description | 
|---|---|
| Test model for chiller based on Carnot efficiency | |
| Test model for chiller electric reformulated EIR | |
| Test model for chiller electric EIR | |
| Package with base classes for Buildings.Fluid.Chillers.Examples | 
Buildings.Fluid.Chillers.Examples.Carnot
| Type | Name | Default | Description | 
|---|---|---|---|
| Power | P_nominal | 10E3 | Nominal compressor power (at y=1) [W] | 
| TemperatureDifference | dTEva_nominal | 10 | Temperature difference evaporator inlet-outlet [K] | 
| TemperatureDifference | dTCon_nominal | 10 | Temperature difference condenser outlet-inlet [K] | 
| Real | COPc_nominal | 3 | Chiller COP | 
| MassFlowRate | m2_flow_nominal | P_nominal*COPc_nominal/dTEva... | Nominal mass flow rate at chilled water side [kg/s] | 
| MassFlowRate | m1_flow_nominal | m2_flow_nominal*(COPc_nomina... | Nominal mass flow rate at condenser water wide [kg/s] | 
model Carnot "Test model for chiller based on Carnot efficiency"
  import Buildings;
  extends Modelica.Icons.Example;
 package Medium1 = Buildings.Media.ConstantPropertyLiquidWater "Medium model";
 package Medium2 = Buildings.Media.ConstantPropertyLiquidWater "Medium model";
  parameter Modelica.SIunits.Power P_nominal=10E3 
    "Nominal compressor power (at y=1)";
  parameter Modelica.SIunits.TemperatureDifference dTEva_nominal=10 
    "Temperature difference evaporator inlet-outlet";
  parameter Modelica.SIunits.TemperatureDifference dTCon_nominal=10 
    "Temperature difference condenser outlet-inlet";
  parameter Real COPc_nominal = 3 "Chiller COP";
  parameter Modelica.SIunits.MassFlowRate m2_flow_nominal=
     P_nominal*COPc_nominal/dTEva_nominal/4200 
    "Nominal mass flow rate at chilled water side";
  parameter Modelica.SIunits.MassFlowRate m1_flow_nominal=
    m2_flow_nominal*(COPc_nominal+1)/COPc_nominal 
    "Nominal mass flow rate at condenser water wide";
  Buildings.Fluid.Chillers.Carnot chi(
    redeclare package Medium1 = Medium1,
    redeclare package Medium2 = Medium2,
    P_nominal=P_nominal,
    dTEva_nominal=dTEva_nominal,
    dTCon_nominal=dTCon_nominal,
    COP_nominal=COPc_nominal,
    use_eta_Carnot=true,
    etaCar=0.3,
    dp1_nominal=6000,
    dp2_nominal=6000,
    m1_flow_nominal=m1_flow_nominal,
    m2_flow_nominal=m2_flow_nominal) "Chiller model";
  Buildings.Fluid.Sources.MassFlowSource_T sou1(nPorts=1,
    redeclare package Medium = Medium1,
    use_T_in=true,
    m_flow=m1_flow_nominal,
    T=298.15);
  Buildings.Fluid.Sources.MassFlowSource_T sou2(nPorts=1,
    redeclare package Medium = Medium2,
    use_T_in=true,
    m_flow=m2_flow_nominal,
    T=291.15);
  Buildings.Fluid.Sources.FixedBoundary sin1(nPorts=1, redeclare package Medium
      = Medium1);
  Buildings.Fluid.Sources.FixedBoundary sin2(nPorts=1, redeclare package Medium
      = Medium2);
  Modelica.Blocks.Sources.Ramp uCom(
    height=-1,
    duration=60,
    offset=1,
    startTime=1800) "Compressor control signal";
  inner Modelica.Fluid.System system;
  Modelica.Blocks.Sources.Ramp TCon_in(
    height=10,
    duration=60,
    offset=273.15 + 20,
    startTime=60) "Condenser inlet temperature";
  Modelica.Blocks.Sources.Ramp TEva_in(
    height=10,
    duration=60,
    startTime=900,
    offset=273.15 + 15) "Evaporator inlet temperature"; 
equation 
  connect(sou1.ports[1], chi.port_a1);
  connect(sou2.ports[1], chi.port_a2);
  connect(chi.port_b1, sin1.ports[1]);
  connect(sin2.ports[1], chi.port_b2);
  connect(TCon_in.y, sou1.T_in);
  connect(TEva_in.y, sou2.T_in);
  connect(uCom.y, chi.y); 
end Carnot;
 
Buildings.Fluid.Chillers.Examples.ElectricReformulatedEIR
| Type | Name | Default | Description | 
|---|---|---|---|
| Power | P_nominal | -per.QEva_flow_nominal/per.C... | Nominal compressor power (at y=1) [W] | 
| TemperatureDifference | dTEva_nominal | 10 | Temperature difference evaporator inlet-outlet [K] | 
| TemperatureDifference | dTCon_nominal | 10 | Temperature difference condenser outlet-inlet [K] | 
| Real | COPc_nominal | 3 | Chiller COP | 
| MassFlowRate | mEva_flow_nominal | per.mEva_flow_nominal | Nominal mass flow rate at evaporator [kg/s] | 
| MassFlowRate | mCon_flow_nominal | per.mCon_flow_nominal | Nominal mass flow rate at condenser [kg/s] | 
model ElectricReformulatedEIR 
  "Test model for chiller electric reformulated EIR"
  extends Modelica.Icons.Example;
  import Buildings;
  extends Buildings.Fluid.Chillers.Examples.BaseClasses.PartialElectric(
      redeclare Buildings.Fluid.Chillers.ElectricReformulatedEIR chi(per=per),
      redeclare Buildings.Fluid.Chillers.Data.ElectricReformulatedEIR.ReformEIRChiller_McQuay_WSC_471kW_5_89COP_Vanes
      per);
end ElectricReformulatedEIR;
 
Buildings.Fluid.Chillers.Examples.ElectricEIR
| Type | Name | Default | Description | 
|---|---|---|---|
| Power | P_nominal | -per.QEva_flow_nominal/per.C... | Nominal compressor power (at y=1) [W] | 
| TemperatureDifference | dTEva_nominal | 10 | Temperature difference evaporator inlet-outlet [K] | 
| TemperatureDifference | dTCon_nominal | 10 | Temperature difference condenser outlet-inlet [K] | 
| Real | COPc_nominal | 3 | Chiller COP | 
| MassFlowRate | mEva_flow_nominal | per.mEva_flow_nominal | Nominal mass flow rate at evaporator [kg/s] | 
| MassFlowRate | mCon_flow_nominal | per.mCon_flow_nominal | Nominal mass flow rate at condenser [kg/s] | 
model ElectricEIR "Test model for chiller electric EIR"
  extends Modelica.Icons.Example;
  import Buildings;
  extends Buildings.Fluid.Chillers.Examples.BaseClasses.PartialElectric(
      redeclare Buildings.Fluid.Chillers.ElectricEIR chi(per=per), redeclare Buildings.Fluid.Chillers.Data.ElectricEIR.ElectricEIRChiller_McQuay_WSC_471kW_5_89COP_Vanes
      per);
end ElectricEIR;