Note:This package is in Beta version as it has not yet been validated.
This package contains models for the heat transfer in rooms and through the building envelope. Multiple instances of these models can be connected to create a multi-zone building model. To compute the air exchange between rooms and between a room and the exterior, the room models can be connected to multi-zone air exchange models from the package Buildings.Airflow. The room models can also be linked to models of HVAC systems that are composed of the components in the package Buildings.Fluid.
Name | Description |
---|---|
MixedAir | Model of a room in which the air is completely mixed |
Constructions | Package with models for constructions that are used in the room model |
Types | Package with type definitions |
Examples | Collection of models that illustrate model use and test models |
BaseClasses | Package with base classes for room models |
The package Buildings.RoomsBeta contains models for heat transfer through the building envelope.
The model Buildings.RoomsBeta.MixedAir is a model of a room with completely mixed air. The room can have any number of constructions and surfaces that participate in the heat exchange through convection, conduction, long-wave radiation and short-wave radiation.
The room models the following physical processes:
The next paragraphs describe how to instantiate a room model. To instantiate a room model,
Buildings.HeatTransfer.Data.OpaqueConstructions.Insulation100Concrete200
matLayExt "Construction material for exterior walls"
annotation (Placement(transformation(extent={{-60,140},{-40,160}})));
Buildings.HeatTransfer.Data.OpaqueConstructions.Brick120 matLayPar
"Construction material for partition walls"
annotation (Placement(transformation(extent={{-20,140},{0,160}})));
Buildings.HeatTransfer.Data.OpaqueConstructions.Generic matLayRoo(
material={
HeatTransfer.Data.Solids.InsulationBoard(x=0.2),
HeatTransfer.Data.Solids.Concrete(x=0.2)},
final nLay=2) "Construction material for roof"
annotation (Placement(transformation(extent={{20,140},{40,160}})));
Buildings.HeatTransfer.Data.OpaqueConstructions.Generic matLayFlo(
material={
HeatTransfer.Data.Solids.Concrete(x=0.2),
HeatTransfer.Data.Solids.InsulationBoard(x=0.1),
HeatTransfer.Data.Solids.Concrete(x=0.05)},
final nLay=3) "Construction material for floor"
annotation (Placement(transformation(extent={{60,140},{80,160}})));
Buildings.HeatTransfer.Data.GlazingSystems.DoubleClearAir13Clear glaSys(
UFra=2,
shade=Buildings.HeatTransfer.Data.Shades.Gray(),
haveExteriorShade=false,
haveInteriorShade=true) "Data record for the glazing system"
annotation (Placement(transformation(extent={{100,140},{120,160}})));
Note that construction layers are assembled from the outside to the room-side. Thus, the construction
matLayRoo
has an exterior insulation. This constructions can then be used in the room model.
Before we explain how to declare and parametrize a room model, we explain the different models that can be used to compute heat transfer through the room enclosing surfaces and constructions. The room model Buildings.RoomsBeta.MixedAir contains the constructions shown in the table below. The first row of the table lists the name of the data record that is used by the user to assign the model parameters. The second row lists the name of the instance of the model that simulates the equations. The third column provides a reference to the class definition that implements the equations. The forth column describes the main applicability of the model.
Record name | Model instance name | Class name | Description of the model |
---|---|---|---|
datConExt | modConExt | Buildings.RoomsBeta.Constructions.Construction | Exterior constructions that have no window. |
datConExtWin | modConExtWin | Buildings.RoomsBeta.Constructions.ConstructionWithWindow |
Exterior constructions that have a window. Each construction of this type needs to have one window.
Within the same room, all windows can either have a shade or have no shade.
Individual windows within the same room can have either an interior shade or an exterior shade, but not both.
Each window has its own control signal for the shade. This signal is exposed by the port uSha , which
has the same dimension as the number of windows. The values for uSha must be between
0 and 1 . Set uSha=0 to open the shade, and uSha=1
to close the shade.
|
datConPar | modConPar | Buildings.RoomsBeta.Constructions.Construction | Interior constructions such as partitions within a room. Both surfaces of this construction are inside the room model and participate in the long-wave and short-wave radiation balance. Since the view factor between these surfaces is zero, there is no long-wave radiation from one surface to the other of the same construction. |
datConBou | modConBou | Buildings.RoomsBeta.Constructions.Construction |
Constructions that expose the other boundary conditions of the other surface to the outside of this room model.
The heat conduction through these constructions is modeled in this room model.
The surface at the port opa_b is connected to the models for convection, long-wave and short-wave radiation exchange
with this room model and with the other surfaces of this room model.
The surface at the port opa_a is connected to the port surf_conBou of this room model. This could be used, for example,
to model a floor inside this room and connect to other side of this floor model to a model that computes heat transfer in the soil.
|
N/A | surBou | Buildings.HeatTransfer.Data.OpaqueSurfaces.Generic |
Opaque surfaces of this room model whose heat transfer through the construction is modeled outside of this room model.
This object is modeled using a data record that contains the area, short-wave and long-wave emissivities and surface tilt.
The surface then participates in the convection and radiation heat balance of the room model. The heat flow rate and temperature
of this surface are exposed at the heat port surf_surBou .
An application of this object may be to connect the port surf_surBou of this room model with the port
surf_conBou of another room model in order to couple two room models.
Another application would be to model a radiant ceiling outside of this room model, and connect its surface to the port
surf_conBou in order for the radiant ceiling model to participate in the heat balance of this room.
|
With these constructions, we may define a room as follows:
Buildings.RoomsBeta.MixedAir roo(
redeclare package Medium = MediumA,
AFlo=6*4,
hRoo=2.7,
nConExt=2,
datConExt(layers={matLayRoo, matLayExt},
A={6*4, 6*3},
til={Types.Tilt.Ceiling, Types.Tilt.Wall},
azi={Types.Azimuth.S, Types.Azimuth.W}),
nConExtWin=nConExtWin,
datConExtWin(layers={matLayExt}, A={4*3},
glaSys={glaSys},
AWin={2*2},
fFra={0.1},
til={Types.Tilt.Wall},
azi={Types.Azimuth.S}),
nConPar=1,
datConPar(layers={matLayPar}, each A=10,
each til=Types.Tilt.Wall),
nConBou=1,
datConBou(layers={matLayFlo}, each A=6*4,
each til=Types.Tilt.Floor),
nSurBou=1,
surBou(each A=6*3, each epsLW=0.9, each epsSW=0.9, each til=Types.Tilt.Wall),
linearizeRadiation = true ,
energyDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial,
lat=0.73268921998722) "Room model"
annotation (Placement(transformation(extent={{46,20},{86,60}})));
The following paragraphs explain the different declarations.
The statement
declares that the medium of the room air is set toredeclare package Medium = MediumA,
AFlo=20,
V=20*2.5,
MediumA
,
that the floor area is 20 m2 and that
the room air volume is 20*2.5 m3.
The floor area is used to scale the internal heat
gains, which are declared with units of W/m2
using the input signal qGai_flow
.
The next entries specify constructions and surfaces that participate in the heat exchange.
The entry
declares that there are two exterior constructions.nConExt=2,
The lines
declare that the material layers in these constructions are set the the recordsdatConExt(layers={matLayRoo, matLayExt},
A={6*4, 6*3},
til={Types.Tilt.Ceiling, Types.Tilt.Wall},
azi={Types.Azimuth.S, Types.Azimuth.W}),
matLayRoo
and matLayExt
.
What follows are the declarations for the surface area,
the tilt of the surface and the azimuth of the surfaces. Thus, the
surface with construction matLayExt
is 6*3 m2 large
and it is a west-facing wall.
Next, the declaration
declares the construction that contains a window. This construction is built using the materials defined in the recordnConExtWin=nConExtWin,
datConExtWin(layers={matLayExt}, A={4*3},
glaSys={glaSys},
AWin={2*2},
fFra={0.1},
til={Types.Tilt.Wall},
azi={Types.Azimuth.S}),
matLayExt
. Its total area,
including the window, is 4*3 m2.
The glazing system is built using the construction defined in the record
glaSys
. The glass area is 2*2 m2 and the ratio of frame
to total glazing system area is 10%. The construction is a wall that is
south exposed.
What follows is the declaration of the partition constructions, as declared by
Thus, there is one partition construction. Its area is 10 m2 fornConPar=1,
datConPar(layers={matLayPar}, each A=10,
each til=Types.Tilt.Wall),
Next, the declaration
declares one construction whose other surface boundary condition is exposed by this room model (through the connectornConBou=1,
datConBou(layers={matLayFlo}, each A=6*4,
each til=Types.Tilt.Floor),
surf_conBou
).
The declaration
is used to instantiate a model for a surface that is in this room. The surface has an area of 6*3 m2, emissivity in the long-wave and the short-wave spectrum of 0.9 and it is a wall. The room model will compute long-wave radiative heat exchange, short-wave radiative heat gains and long-wave radiative heat gains of this surface. The surface temperature and heat flow rate are exposed by this room model at the heat portnSurBou=1,
surBou(each A=6*3, each epsLW=0.9, each epsSW=0.9, each til=Types.Tilt.Wall),
surf_surBou
.
A model builder may use this construct
to couple this room model to another room model that may model the construction.
The declaration
causes the equations for radiative and convective heat transfer to be linearized. This can reduce computing time at the expense of accuracy.linearizeRadiation = true ,
The declaration
is used to initialize the air volume inside the thermal zone.energyDynamics=Modelica.Fluid.Types.Dynamics.FixedInitial,
Finally, the declaration
sets the latitude of the building which needs to correspond with the latitude of the weather data file.lat=0.73268921998722) "Room model"
Extends from Buildings.RoomsBeta.BaseClasses.ParameterFluid (Parameter declaration for fluid model), Buildings.RoomsBeta.BaseClasses.ConstructionRecords (Data records for construction data).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialCondensingGases | Medium in the component | |
ParameterConstruction | datConExt[NConExt] | Data for exterior construction | |
ParameterConstructionWithWindow | datConExtWin[NConExtWin] | Data for exterior construction with window | |
ParameterConstruction | datConPar[NConPar] | Data for partition construction | |
ParameterConstruction | datConBou[NConBou] | Data for construction boundary | |
ParameterSurface | surBou[NSurBou] | Record for data of surfaces whose heat conduction is modeled outside of this room | |
Angle | lat | Latitude [rad] | |
Area | AFlo | Floor area [m2] | |
Length | hRoo | Average room height [m] | |
Boolean | linearizeRadiation | true | Set to true to linearize emissive power |
Exterior constructions | |||
Integer | nConExt | Number of exterior constructions | |
Integer | nConExtWin | Number of window constructions | |
Partition constructions | |||
Integer | nConPar | Number of partition constructions | |
Boundary constructions | |||
Integer | nConBou | Number of constructions that have their outside surface exposed to the boundary of this room | |
Integer | nSurBou | Number of surface heat transfer models that connect to constructions that are modeled outside of this room | |
Assumptions | |||
Dynamics | |||
Dynamics | energyDynamics | Modelica.Fluid.Types.Dynamic... | Formulation of energy balance |
Dynamics | massDynamics | energyDynamics | Formulation of mass balance |
Dynamics | substanceDynamics | energyDynamics | Formulation of substance balance |
Dynamics | traceDynamics | energyDynamics | Formulation of trace substance balance |
Initialization | |||
AbsolutePressure | p_start | Medium.p_default | Start value of pressure [Pa] |
Boolean | use_T_start | true | = true, use T_start, otherwise h_start |
Temperature | T_start | if use_T_start then 293.15 e... | Start value of temperature [K] |
SpecificEnthalpy | h_start | if use_T_start then Medium.s... | Start value of specific enthalpy [J/kg] |
MassFraction | X_start[Medium.nX] | Medium.X_default | Start value of mass fractions m_i/m [kg/kg] |
ExtraProperty | C_start[Medium.nC] | fill(0, Medium.nC) | Start value of trace substances |
ExtraProperty | C_nominal[Medium.nC] | fill(1E-2, Medium.nC) | Nominal value of trace substances. (Set to typical order of magnitude.) |
Type | Name | Description |
---|---|---|
VesselFluidPorts_b | ports[nPorts] | Fluid inlets and outlets |
HeatPort_a | heaPorAir | Heat port to air volume |
HeatPort_a | heaPorRad | Heat port for radiative heat gain and radiative temperature |
HeatPort_a | surf_conBou[nConBou] | Heat port at surface b of construction conBou |
HeatPort_a | surf_surBou[nSurBou] | Heat port of surface that is connected to the room air |
input RealInput | uSha[nConExtWin] | Control signal for the shading device (removed if no shade is present) |
input RealInput | qGai_flow[3] | Radiant, convective and latent heat input into room (positive if heat gain) [W/m2] |
Bus | weaBus |
model MixedAir "Model of a room in which the air is completely mixed" extends Buildings.RoomsBeta.BaseClasses.ParameterFluid; extends Buildings.RoomsBeta.BaseClasses.ConstructionRecords; parameter Integer nPorts=0 "Number of ports";Buildings.RoomsBeta.BaseClasses.MixedAir air( final nConExt=nConExt, final nConExtWin=nConExtWin, final nConPar=nConPar, final nConBou=nConBou, final nSurBou=nSurBou, final datConExt=datConExt, final datConExtWin=datConExtWin, final datConPar=datConPar, final datConBou=datConBou, final surBou=surBou, redeclare final package Medium=Medium, final V=V, nPorts=nPorts, final energyDynamics=energyDynamics, final massDynamics=massDynamics, final substanceDynamics=energyDynamics, final traceDynamics=energyDynamics, final p_start=p_start, final use_T_start=use_T_start, final T_start=T_start, final h_start=h_start, final X_start=X_start, final C_start=C_start, final AFlo=AFlo, final hRoo=hRoo, final linearizeRadiation = linearizeRadiation, tauGlaSW={0.6 for i in 1:NConExtWin}) "Air volume"; Modelica.Fluid.Vessels.BaseClasses.VesselFluidPorts_b ports[nPorts]( redeclare each package Medium = Medium) "Fluid inlets and outlets"; parameter Modelica.SIunits.Angle lat "Latitude"; final parameter Modelica.SIunits.Volume V=AFlo*hRoo "Volume"; parameter Modelica.SIunits.Area AFlo "Floor area"; parameter Modelica.SIunits.Length hRoo "Average room height";Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a heaPorAir "Heat port to air volume"; Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a heaPorRad "Heat port for radiative heat gain and radiative temperature"; //////////////////////////////////////////////////////////////////////// // ConstructionsConstructions.Construction conExt[NConExt]( A=datConExt.A, til=datConExt.til, final layers={datConExt[i].layers for i in 1:NConExt}, steadyStateInitial=datConExt.steadyStateInitial, T_a_start=datConExt.T_a_start, T_b_start=datConExt.T_b_start) if haveConExt "Heat conduction through exterior construction that have no window"; Constructions.ConstructionWithWindow conExtWin[NConExtWin]( A=datConExtWin.A, til=datConExtWin.til, final layers={datConExtWin[i].layers for i in 1:NConExtWin}, steadyStateInitial=datConExtWin.steadyStateInitial, T_a_start=datConExtWin.T_a_start, T_b_start=datConExtWin.T_b_start, AWin=datConExtWin.AWin, fFra=datConExtWin.fFra, glaSys=datConExtWin.glaSys) if haveConExtWin "Heat conduction through exterior construction that have a window"; Constructions.Construction conPar[NConPar]( A=datConPar.A, til=datConPar.til, final layers={datConPar[i].layers for i in 1:NConPar}, steadyStateInitial=datConPar.steadyStateInitial, T_a_start=datConPar.T_a_start, T_b_start=datConPar.T_b_start) if haveConPar "Heat conduction through partitions that have both sides inside the thermal zone"; Constructions.Construction conBou[NConBou]( A=datConBou.A, til=datConBou.til, final layers={datConBou[i].layers for i in 1:NConBou}, steadyStateInitial=datConBou.steadyStateInitial, T_a_start=datConBou.T_a_start, T_b_start=datConBou.T_b_start) if haveConBou "Heat conduction through opaque constructions that have the boundary conditions of the other side exposed"; parameter Boolean linearizeRadiation = true "Set to true to linearize emissive power"; //////////////////////////////////////////////////////////////////////// // Models for boundary conditionsModelica.Thermal.HeatTransfer.Interfaces.HeatPort_a surf_conBou[nConBou] if haveConBou "Heat port at surface b of construction conBou"; Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a surf_surBou[nSurBou] if haveSurBou "Heat port of surface that is connected to the room air"; Modelica.Blocks.Interfaces.RealInput uSha[nConExtWin](each min=0, each max=1) if haveShade "Control signal for the shading device (removed if no shade is present)"; Modelica.Blocks.Interfaces.RealInput qGai_flow[3](unit="W/m2") "Radiant, convective and latent heat input into room (positive if heat gain)"; BaseClasses.ExteriorBoundaryConditions bouConExt( final nCon=nConExt, final AOpa=datConExt.A, final lat=lat, final til=datConExt.til, final azi=datConExt.azi, linearizeRadiation = linearizeRadiation, final epsLW=datConExt.layers.epsLW_a, final epsSW=datConExt.layers.epsSW_a) if haveConExt "Exterior boundary conditions for constructions without a window"; BaseClasses.ExteriorBoundaryConditionsWithWindow bouConExtWin( final nCon=nConExtWin, final lat=lat, final til=datConExtWin.til, final azi=datConExtWin.azi, final AOpa=datConExtWin.AOpa, final AWin=datConExtWin.AWin, final fFra=datConExtWin.fFra, linearizeRadiation = linearizeRadiation, final epsLW=datConExtWin.layers.epsLW_a, final epsLWSha_air={datConExtWin[i].glaSys.shade.epsLW_a for i in 1:nConExtWin}, final epsLWSha_glass={datConExtWin[i].glaSys.shade.epsLW_b for i in 1:nConExtWin}, final tauLWSha_air={datConExtWin[i].glaSys.shade.tauLW_a for i in 1:nConExtWin}, final tauLWSha_glass={datConExtWin[i].glaSys.shade.tauLW_b for i in 1:nConExtWin}, final haveExteriorShade={datConExtWin[i].glaSys.haveExteriorShade for i in 1:nConExtWin}, final haveInteriorShade={datConExtWin[i].glaSys.haveInteriorShade for i in 1:nConExtWin}, final epsSW=datConExtWin.layers.epsSW_a, final epsSWFra=datConExtWin.glaSys.epsSWFra) if haveConExtWin "Exterior boundary conditions for constructions with a window"; HeatTransfer.WindowsBeta.BaseClasses.WindowRadiation conExtWinRad[NConExtWin]( final AWin=(1 .- datConExtWin.fFra) .* datConExtWin.AWin, final N=datConExtWin.glaSys.nLay, final tauGlaSW=datConExtWin.glaSys.glass.tauSW, final rhoGlaSW_a=datConExtWin.glaSys.glass.rhoSW_a, final rhoGlaSW_b=datConExtWin.glaSys.glass.rhoSW_b, final tauShaSW_a=datConExtWin.glaSys.shade.tauSW_a, final tauShaSW_b=datConExtWin.glaSys.shade.tauSW_b, final rhoShaSW_a=datConExtWin.glaSys.shade.rhoSW_a, final rhoShaSW_b=datConExtWin.glaSys.shade.rhoSW_b, final haveExteriorShade=datConExtWin.glaSys.haveExteriorShade, final haveInteriorShade=datConExtWin.glaSys.haveInteriorShade) if haveConExtWin "Model for short wave radiation through shades and window"; BoundaryConditions.WeatherData.Bus weaBus; protected final parameter Boolean haveShade= datConExtWin[1].glaSys.haveExteriorShade or datConExtWin[1].glaSys.haveInteriorShade "Set to true if the windows have a shade"; equationconnect(air.conExtWin, conExtWin.opa_b); connect(air.conPar_b, conPar.opa_b); connect(air.conPar_a, conPar.opa_a); connect(conBou.opa_a, surf_conBou); connect(air.conBou, conBou.opa_b); connect(surf_surBou, air.conSurBou); connect(uSha, air.uSha); connect(qGai_flow, air.qGai_flow); connect(air.JOutUns, conExtWin.JInUns_b); connect(conExtWin.JOutUns_b, air.JInUns); connect(air.JOutSha, conExtWin.JInSha_b); connect(conExtWin.JOutSha_b, air.JInSha); connect(air.glaUns, conExtWin.glaUns_b); connect(conExtWin.glaSha_b, air.glaSha); connect(air.conExtWinFra, conExtWin.fra_b); connect(uSha, conExtWin.uSha); connect(uSha, bouConExtWin.uSha); connect(bouConExtWin.opa_a, conExtWin.opa_a); connect(conExtWin.JInUns_a, bouConExtWin.JOutUns); connect(bouConExtWin.JInUns, conExtWin.JOutUns_a); connect(conExtWin.glaUns_a, bouConExtWin.glaUns); connect(bouConExtWin.glaSha, conExtWin.glaSha_a); connect(conExtWin.JInSha_a, bouConExtWin.JOutSha); connect(bouConExtWin.JInSha, conExtWin.JOutSha_a); connect(conExtWin.fra_a, bouConExtWin.fra); connect(conExt.opa_b, air.conExt); connect(conExt.opa_a, bouConExt.opa_a); connect(weaBus, bouConExtWin.weaBus); connect(weaBus, bouConExt.weaBus); connect(ports, air.ports); connect(bouConExtWin.QAbsSWSha_flow, conExtWinRad.QAbsExtSha_flow); connect(bouConExtWin.inc, conExtWinRad.incAng); connect(bouConExtWin.HDir, conExtWinRad.HDir); connect(bouConExtWin.HDif, conExtWinRad.HDif); connect(uSha, conExtWinRad.uSha); connect(air.HOutConExtWin, conExtWinRad.HRoo); connect(conExtWinRad.QTra_flow, air.JInConExtWin); connect(conExtWinRad.QAbsIntSha_flow, air.QAbsSWSha_flow); connect(conExtWin.QAbsSha_flow, conExtWinRad.QAbsGlaSha_flow); connect(conExtWinRad.QAbsGlaUns_flow, conExtWin.QAbsUns_flow); connect(air.heaPorAir, heaPorAir); connect(air.heaPorRad, heaPorRad); end MixedAir;