Modelica.Math.Vectors

Library of functions operating on vectors

Information


Library content

This library provides functions operating on vectors:

See also

Matrices

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

NameDescription
Modelica.Math.Vectors.toString toString Convert a real vector in to a string representation
Modelica.Math.Vectors.isEqual isEqual Determine if two Real vectors are numerically identical
Modelica.Math.Vectors.norm norm Return the p-norm of a vector
Modelica.Math.Vectors.length length Return length of a vector (better as norm(), if further symbolic processing is performed)
Modelica.Math.Vectors.normalize normalize Return normalized vector such that length = 1 and prevent zero-division for zero vector
Modelica.Math.Vectors.normalizeWithAssert normalizeWithAssert Return normalized vector such that length = 1 (trigger an assert for zero vector)
Modelica.Math.Vectors.reverse reverse Reverse vector elements (e.g., v[1] becomes last element)
Modelica.Math.Vectors.sort sort Sort elements of vector in ascending or descending order
Modelica.Math.Vectors.find find Find element in a vector
Modelica.Math.Vectors.interpolate interpolate Interpolate in a vector
Modelica.Math.Vectors.relNodePositions relNodePositions Return vector of relative node positions (0..1)
Modelica.Math.Vectors.Utilities Utilities Utility functions that should not be directly utilized by the user

Modelica.Math.Vectors.toString Modelica.Math.Vectors.toString

Convert a real vector in to a string representation

Information


Syntax

Vectors.toString(v);
Vectors.toString(v,name="",significantDigits=6);

Description

The function call "Vectors.toString(v)" returns the string representation of vector v. With the optional arguments "name" and "significantDigits" a name and the number of the digits are defined. The default values of "name" and "significantDigits" are "" and 6 respectively. If name=="" (empty string) then the prefix "<name> =" is leaved out at the output-string.

Example

  v = {2.12, -4.34, -2.56, -1.67};
  toString(v);
                         // = "
                         //           2.12
                         //          -4.34
                         //          -2.56
                         //          -1.67"
  toString(v,"vv",1);
                         // = "vv =
                         //           2
                         //          -4
                         //          -3
                         //          -2"

See also

Matrices.toString,

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v[:]Real vector
nameIndependent variable name used for printing
significantDigitsNumber of significant digits that are shown

Outputs

NameDescription
s 

Modelica.Math.Vectors.isEqual Modelica.Math.Vectors.isEqual

Determine if two Real vectors are numerically identical

Information


Syntax

Vectors.isEqual(v1, v2);
Vectors.isEqual(v1, v2, eps=0);

Description

The function call "Vectors.isEqual(v1, v2)" returns true, if the two Real vectors v1 and v2 have the same dimensions and the same elements. Otherwise the function returns false. Two elements e1 and e2 of the two vectors are checked on equality by the test "abs(e1-e2) ≤ eps", where "eps" can be provided as third argument of the function. Default is "eps = 0".

Example

  Real v1[3] = {1, 2, 3};
  Real v2[4] = {1, 2, 3, 4};
  Real v3[3] = {1, 2, 3.0001};
  Boolean result;
algorithm
  result := Vectors.isEqual(v1,v2);     // = false
  result := Vectors.isEqual(v1,v3);     // = false
  result := Vectors.isEqual(v1,v1);     // = true
  result := Vectors.isEqual(v1,v3,0.1); // = true

See also

Vectors.find, Matrices.isEqual, Strings.isEqual

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v1[:]First vector
v2[:]Second vector (may have different length as v1)
epsTwo elements e1 and e2 of the two vectors are identical if abs(e1-e2) <= eps

Outputs

NameDescription
result= true, if vectors have the same length and the same elements

Modelica.Math.Vectors.norm Modelica.Math.Vectors.norm

Return the p-norm of a vector

Information


Syntax

Vectors.norm(v);
Vectors.norm(v,p=2);   // 1 ≤ p ≤ ∞

Description

The function call "Vectors.norm(v)" returns the Euclidean norm "sqrt(v*v)" of vector v. With the optional second argument "p", any other p-norm can be computed:

function Vectors.norm

Besides the Euclidean norm (p=2), also the 1-norm and the infinity-norm are sometimes used:

1-norm = sum(abs(v)) norm(v,1)
2-norm = sqrt(v*v) norm(v) or norm(v,2)
infinity-norm = max(abs(v)) norm(v,Modelica.Constants.inf)

Note, for any vector norm the following inequality holds:

norm(v1+v2,p) ≤ norm(v1,p) + norm(v2,p)

Example

  v = {2, -4, -2, -1};
  norm(v,1);    // = 9
  norm(v,2);    // = 5
  norm(v);      // = 5
  norm(v,10.5); // = 4.00052597412635
  norm(v,Modelica.Constants.inf);  // = 4

See also

Matrices.norm

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v[:]Vector
pType of p-norm (often used: 1, 2, or Modelica.Constants.inf)

Outputs

NameDescription
resultp-norm of vector v

Modelica.Math.Vectors.length Modelica.Math.Vectors.length

Return length of a vector (better as norm(), if further symbolic processing is performed)

Information


Syntax

Vectors.length(v);

Description

The function call "Vectors.length(v)" returns the Euclidean length "sqrt(v*v)" of vector v. The function call is equivalent to Vectors.norm(v). The advantage of length(v) over norm(v)"is that function length(..) is implemented in one statement and therefore the function is usually automatically inlined. Further symbolic processing is therefore possible, which is not the case with function norm(..).

Example

  v = {2, -4, -2, -1};
  length(v);  // = 5

See also

Vectors.norm

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v[:]Vector

Outputs

NameDescription
resultLength of vector v

Modelica.Math.Vectors.normalize Modelica.Math.Vectors.normalize

Return normalized vector such that length = 1 and prevent zero-division for zero vector

Information


Syntax

Vectors.normalize(v);
Vectors.normalize(v,eps=100*Modelica.Constants.eps);

Description

The function call "Vectors.normalize(v)" returns the unit vector "v/length(v)" of vector v. If length(v) is close to zero (more precisely, if length(v) < eps), v/eps is returned in order to avoid a division by zero. For many applications this is useful, because often the unit vector e = v/length(v) is used to compute a vector x*e, where the scalar x is in the order of length(v), i.e., x*e is small, when length(v) is small and then it is fine to replace e by v to avoid a division by zero.

Since the function has the "Inline" annotation, it is usually inlined and symbolic processing is applied.

Example

  normalize({1,2,3});  // = {0.267, 0.534, 0.802}
  normalize({0,0,0});  // = {0,0,0}

See also

Vectors.length, Vectors.normalizeWithAssert

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v[:]Vector
epsif |v| < eps then result = v/eps

Outputs

NameDescription
result[size(v, 1)]Input vector v normalized to length=1

Modelica.Math.Vectors.normalizeWithAssert Modelica.Math.Vectors.normalizeWithAssert

Return normalized vector such that length = 1 (trigger an assert for zero vector)

Information


Syntax

Vectors.normalizeWithAssert(v);

Description

The function call "Vectors.normalizeWithAssert(v)" returns the unit vector "v/sqrt(v*v)" of vector v. If vector v is a zero vector, an assert is triggered.

Since the function has the "Inline" annotation, it is usually inlined and symbolic processing is applied.

Example

  normalizeWithAssert({1,2,3});  // = {0.267, 0.534, 0.802}
  normalizeWithAssert({0,0,0});  // error (an assert is triggered)

See also

Vectors.length, Vectors.normalize

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v[:]Vector

Outputs

NameDescription
result[size(v, 1)]Input vector v normalized to length=1

Modelica.Math.Vectors.reverse Modelica.Math.Vectors.reverse

Reverse vector elements (e.g., v[1] becomes last element)

Information


Syntax

Vectors.reverse(v);

Description

The function call "Vectors.reverse(v)" returns the vector elements in reverse order.

Example

  reverse({1,2,3,4});  // = {4,3,2,1}

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v[:]Vector

Outputs

NameDescription
result[size(v, 1)]Elements of vector v in reversed order

Modelica.Math.Vectors.sort Modelica.Math.Vectors.sort

Sort elements of vector in ascending or descending order

Information


Syntax

           sorted_v = Vectors.sort(v);
(sorted_v, indices) = Vectors.sort(v, ascending=true);

Description

Function sort(..) sorts a Real vector v in ascending order and returns the result in sorted_v. If the optional argument "ascending" is false, the vector is sorted in descending order. In the optional second output argument the indices of the sorted vector with respect to the original vector are given, such that sorted_v = v[indices].

Example

  (v2, i2) := Vectors.sort({-1, 8, 3, 6, 2});
       -> v2 = {-1, 2, 3, 6, 8}
          i2 = {1, 5, 3, 4, 2}

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
v[:]Vector to be sorted
ascending= true if ascending order, otherwise descending order

Outputs

NameDescription
sorted_v[size(v, 1)]Sorted vector
indices[size(v, 1)]sorted_v = v[indices]

Modelica.Math.Vectors.find Modelica.Math.Vectors.find

Find element in a vector

Information


Syntax

Vectors.find(e, v);
Vectors.find(e, v, eps=0);

Description

The function call "Vectors.find(e, v)" returns the index of the first occurrence of input e in vector v. The test of equality is performed by "abs(e-v[i]) ≤ eps", where "eps" can be provided as third argument of the function. Default is "eps = 0".

Example

  Real v[3] = {1, 2, 3};
  Real e1 = 2;
  Real e2 = 3.01;
  Boolean result;
algorithm
  result := Vectors.find(e1,v);          // = 2
  result := Vectors.find(e2,v);          // = 0
  result := Vectors.find(e2,v,eps=0.1);  // = 3

See also

Vectors.isEqual

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
eSearch for e
v[:]Integer vector
epsElement e is equal to a element v[i] of vector v if abs(e-v[i]) <= eps

Outputs

NameDescription
resultv[result] = e (first occurrence of e); result=0, if not found

Modelica.Math.Vectors.interpolate Modelica.Math.Vectors.interpolate

Interpolate in a vector

Information


Syntax

// Real    x[:], y[:], xi, yi;
// Integer iLast, iNew;
        yi = Vectors.interpolate(x,y,xi);
(yi, iNew) = Vectors.interpolate(x,y,xi,iLast=1);

Description

The function call "Vectors.interpolate(x,y,xi)" interpolates in vectors (x,y) and returns the value yi that corresponds to xi. Vector x[:] must consist of strictly monotonically increasing values. If xi < x[1] or > x[end], then extrapolation takes places through the first or last two x[:] values, respectively. The search for the interval x[iNew] ≤ xi < x[iNew+1] starts at the optional input argument "iLast". The index "iNew" is returned as output argument. The usage of "iLast" and "iNew" is useful to increase the efficiency of the call, if many interpolations take place.

Example

  Real x[:] = { 0,  2,  4,  6,  8, 10};
  Real y[:] = {10, 20, 30, 40, 50, 60};
algorithm
  (yi, iNew) := Vectors.interpolate(x,y,5);  // yi = 35, iNew=3

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
x[:]Abscissa table vector (strict monotonically increasing values required)
y[size(x, 1)]Ordinate table vector
xiDesired abscissa value
iLastIndex used in last search

Outputs

NameDescription
yiOrdinate value corresponding to xi
iNewxi is in the interval x[iNew] <= xi < x[iNew+1]

Modelica.Math.Vectors.relNodePositions Modelica.Math.Vectors.relNodePositions

Return vector of relative node positions (0..1)

Information


Syntax

Vectors.relNodePositions(nNodes);

Description

The function call "relNodePositions(nNodes)" returns a vector with the relative positions of the nodes of a discretized pipe with nNodes nodes (including the node at the left and at the right side of the pipe), see next figure:

Example

  Real xsi[7];
algorithm
  xsi = relNodePositions(7);  // xsi = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}

See also

MultiBody.Visualizers.PipeWithScalarField

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

NameDescription
nNodesNumber of nodes (including node at left and right position)

Outputs

NameDescription
xsi[nNodes]Relative node positions

Automatically generated Mon Sep 23 17:21:10 2013.