Modelica.Fluid.Pipes

Devices for conveying fluid

Information



Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).

Package Content

NameDescription
Modelica.Fluid.Pipes.StaticPipe StaticPipe Basic pipe flow model without storage of mass or energy
Modelica.Fluid.Pipes.DynamicPipe DynamicPipe Dynamic pipe model with storage of mass and energy
Modelica.Fluid.Pipes.BaseClasses BaseClasses Base classes used in the Pipes package (only of interest to build new component models)


Modelica.Fluid.Pipes.StaticPipe Modelica.Fluid.Pipes.StaticPipe

Basic pipe flow model without storage of mass or energy

Modelica.Fluid.Pipes.StaticPipe

Information


Model of a straight pipe with constant cross section and with steady-state mass, momentum and energy balances, i.e., the model does not store mass or energy. There exist two thermodynamic states, one at each fluid port. The momentum balance is formulated for the two states, taking into account momentum flows, friction and gravity. The same result can be obtained by using DynamicPipe with steady-state dynamic settings. The intended use is to provide simple connections of vessels or other devices with storage, as it is done in:

Numerical Issues

With the stream connectors the thermodynamic states on the ports are generally defined by models with storage or by sources placed upstream and downstream of the static pipe. Other non storage components in the flow path may yield to state transformation. Note that this generally leads to nonlinear equation systems if multiple static pipes, or other flow models without storage, are directly connected.



Extends from Modelica.Fluid.Pipes.BaseClasses.PartialStraightPipe (Base class for straight pipe models).

Parameters

TypeNameDefaultDescription
replaceable package MediumPartialMediumMedium in the component
Geometry
RealnParallel1Number of identical parallel pipes
Lengthlength Length [m]
BooleanisCirculartrue= true if cross sectional area is circular
Diameterdiameter Diameter of circular pipe [m]
AreacrossAreaModelica.Constants.pi*diamet...Inner cross section area [m2]
LengthperimeterModelica.Constants.pi*diameterInner perimeter [m]
Heightroughness2.5e-5Average height of surface asperities (default: smooth steel pipe) [m]
Static head
Lengthheight_ab0Height(port_b) - Height(port_a) [m]
Pressure loss
replaceable model FlowModelDetailedPipeFlowWall friction, gravity, momentum flow
Assumptions
BooleanallowFlowReversalsystem.allowFlowReversal= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Initialization
AbsolutePressurep_a_startsystem.p_startStart value of pressure at port a [Pa]
AbsolutePressurep_b_startp_a_startStart value of pressure at port b [Pa]
MassFlowRatem_flow_startsystem.m_flow_startStart value for mass flow rate [kg/s]

Connectors

TypeNameDescription
FluidPort_aport_aFluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_bport_bFluid connector b (positive design flow direction is from port_a to port_b)

Modelica definition

model StaticPipe 
  "Basic pipe flow model without storage of mass or energy"

  // extending PartialStraightPipe
  extends Modelica.Fluid.Pipes.BaseClasses.PartialStraightPipe;

  // Initialization
  parameter Medium.AbsolutePressure p_a_start=system.p_start 
    "Start value of pressure at port a";
  parameter Medium.AbsolutePressure p_b_start=p_a_start 
    "Start value of pressure at port b";
  parameter Medium.MassFlowRate m_flow_start = system.m_flow_start 
    "Start value for mass flow rate";

  FlowModel flowModel(
          redeclare final package Medium = Medium,
          final n=2,
          states={Medium.setState_phX(port_a.p, inStream(port_a.h_outflow), inStream(port_a.Xi_outflow)),
                 Medium.setState_phX(port_b.p, inStream(port_b.h_outflow), inStream(port_b.Xi_outflow))},
          vs={port_a.m_flow/Medium.density(flowModel.states[1])/flowModel.crossAreas[1],
              -port_b.m_flow/Medium.density(flowModel.states[2])/flowModel.crossAreas[2]}/nParallel,
          final momentumDynamics=Types.Dynamics.SteadyState,
          final allowFlowReversal=allowFlowReversal,
          final p_a_start=p_a_start,
          final p_b_start=p_b_start,
          final m_flow_start=m_flow_start,
          final nParallel=nParallel,
          final pathLengths={length},
          final crossAreas={crossArea, crossArea},
          final dimensions={4*crossArea/perimeter, 4*crossArea/perimeter},
          final roughnesses={roughness, roughness},
          final dheights={height_ab},
          final g=system.g) "Flow model";
equation 
  // Mass balance
  port_a.m_flow = flowModel.m_flows[1];
  0 = port_a.m_flow + port_b.m_flow;
  port_a.Xi_outflow = inStream(port_b.Xi_outflow);
  port_b.Xi_outflow = inStream(port_a.Xi_outflow);
  port_a.C_outflow = inStream(port_b.C_outflow);
  port_b.C_outflow = inStream(port_a.C_outflow);

  // Energy balance, considering change of potential energy
  // Wb_flow = v*A*dpdx + v*F_fric
  //         = m_flow/d/A * (A*dpdx + A*pressureLoss.dp_fg - F_grav)
  //         = m_flow/d/A * (-A*g*height_ab*d)
  //         = -m_flow*g*height_ab
  port_b.h_outflow = inStream(port_a.h_outflow) - system.g*height_ab;
  port_a.h_outflow = inStream(port_b.h_outflow) + system.g*height_ab;

end StaticPipe;

Modelica.Fluid.Pipes.DynamicPipe Modelica.Fluid.Pipes.DynamicPipe

Dynamic pipe model with storage of mass and energy

Modelica.Fluid.Pipes.DynamicPipe

Information


Model of a straight pipe with distributed mass, energy and momentum balances. It provides the complete balance equations for one-dimensional fluid flow as formulated in UsersGuide.ComponentDefinition.BalanceEquations.

The partial differential equations are treated with the finite volume method and a staggered grid scheme for momentum balances. The pipe is split into nNodes equally spaced segments along the flow path. The default value is nNodes=2. This results in two lumped mass and energy balances and one lumped momentum balance across the dynamic pipe.

Note that this generally leads to high-index DAEs for pressure states if dynamic pipes are directly connected to each other, or generally to models with storage exposing a thermodynamic state through the port. This may not be valid if the dynamic pipe is connected to a model with non-differentiable pressure, like a Sources.Boundary_pT with prescribed jumping pressure. The modelStructure can be configured as appropriate in such situations, in order to place a momentum balance between a pressure state of the pipe and a non-differentiable boundary condition.

The default modelStructure is av_vb (see Advanced tab). The simplest possible alternative symetric configuration, avoiding potential high-index DAEs at the cost of the potential introduction of nonlinear equation systems, is obtained with the setting nNodes=1, modelStructure=a_v_b. Depending on the configured model structure, the first and the last pipe segment, or the flow path length of the first and the last momentum balance, are of half size. See the documentation of the base class Pipes.BaseClasses.PartialTwoPortFlow, also covering asymmetric configurations.

The HeatTransfer component specifies the source term Qb_flows of the energy balance. The default component uses a constant coefficient for the heat transfer between the bulk flow and the segment boundaries exposed through the heatPorts. The HeatTransfer model is replaceable and can be exchanged with any model extended from BaseClasses.HeatTransfer.PartialFlowHeatTransfer.

The intended use is for complex networks of pipes and other flow devices, like valves. See e.g.

Extends from Modelica.Fluid.Pipes.BaseClasses.PartialStraightPipe (Base class for straight pipe models), BaseClasses.PartialTwoPortFlow (Base class for distributed flow models).

Parameters

TypeNameDefaultDescription
replaceable package MediumPartialMediumMedium in the component
Geometry
RealnParallel1Number of identical parallel pipes
Lengthlength Length [m]
BooleanisCirculartrue= true if cross sectional area is circular
Diameterdiameter Diameter of circular pipe [m]
AreacrossAreaModelica.Constants.pi*diamet...Inner cross section area [m2]
LengthperimeterModelica.Constants.pi*diameterInner perimeter [m]
Heightroughness2.5e-5Average height of surface asperities (default: smooth steel pipe) [m]
Lengthlengths[n]if n == 1 then {length} else...lengths of flow segments [m]
AreacrossAreas[n]fill(crossArea, n)cross flow areas of flow segments [m2]
Lengthdimensions[n]fill(4*crossArea/perimeter, n)hydraulic diameters of flow segments [m]
Heightroughnesses[n]fill(roughness, n)Average heights of surface asperities [m]
Static head
Lengthheight_ab0Height(port_b) - Height(port_a) [m]
Lengthdheights[n]height_ab*dxsDifferences in heigths of flow segments [m]
Pressure loss
replaceable model FlowModelDetailedPipeFlowWall friction, gravity, momentum flow
Assumptions
BooleanallowFlowReversalsystem.allowFlowReversal= true to allow flow reversal, false restricts to design direction (port_a -> port_b)
Dynamics
DynamicsenergyDynamicssystem.energyDynamicsFormulation of energy balances
DynamicsmassDynamicssystem.massDynamicsFormulation of mass balances
DynamicsmomentumDynamicssystem.momentumDynamicsFormulation of momentum balances
Heat transfer
Booleanuse_HeatTransferfalse= true to use the HeatTransfer model
Initialization
AbsolutePressurep_a_startsystem.p_startStart value of pressure at port a [Pa]
AbsolutePressurep_b_startp_a_startStart value of pressure at port b [Pa]
Booleanuse_T_starttrueUse T_start if true, otherwise h_start
TemperatureT_startif use_T_start then system.T...Start value of temperature [K]
SpecificEnthalpyh_startif use_T_start then Medium.s...Start value of specific enthalpy [J/kg]
MassFractionX_start[Medium.nX]Medium.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC_start[Medium.nC]fill(0, Medium.nC)Start value of trace substances
MassFlowRatem_flow_startsystem.m_flow_startStart value for mass flow rate [kg/s]
Advanced
IntegernNodes2Number of discrete flow volumes
ModelStructuremodelStructureTypes.ModelStructure.av_vbDetermines whether flow or volume models are present at the ports
BooleanuseLumpedPressurefalse=true to lump pressure states together
BooleanuseInnerPortPropertiesfalse=true to take port properties for flow models from internal control volumes

Connectors

TypeNameDescription
FluidPort_aport_aFluid connector a (positive design flow direction is from port_a to port_b)
FluidPort_bport_bFluid connector b (positive design flow direction is from port_a to port_b)
HeatPorts_aheatPorts[nNodes] 

Modelica definition

model DynamicPipe 
  "Dynamic pipe model with storage of mass and energy"

  import Modelica.Fluid.Types.ModelStructure;

  // extending PartialStraightPipe
  extends Modelica.Fluid.Pipes.BaseClasses.PartialStraightPipe(
    final port_a_exposesState = (modelStructure == ModelStructure.av_b) or (modelStructure == ModelStructure.av_vb),
    final port_b_exposesState = (modelStructure == ModelStructure.a_vb) or (modelStructure == ModelStructure.av_vb));

  // extending PartialTwoPortFlow
  extends BaseClasses.PartialTwoPortFlow(
    final lengths=if n == 1 then 
                      {length} else 
                  if modelStructure == ModelStructure.av_vb then 
                      cat(1, {length/(n-1)/2}, fill(length/(n-1), n-2), {length/(n-1)/2}) else 
                  if modelStructure == ModelStructure.av_b then 
                      cat(1, {length/n/2}, fill(length*(1-1/n/2)/(n-1), n-1)) else 
                  if modelStructure == ModelStructure.a_vb then 
                      cat(1, fill(length*(1-1/n/2)/(n-1), n-1), {length/n/2}) else 
                      fill(length/n, n),
    final crossAreas=fill(crossArea, n),
    final dimensions=fill(4*crossArea/perimeter, n),
    final roughnesses=fill(roughness, n),
    final dheights=height_ab*dxs);

  // Wall heat transfer
  parameter Boolean use_HeatTransfer = false 
    "= true to use the HeatTransfer model";
  replaceable model HeatTransfer =
      Modelica.Fluid.Pipes.BaseClasses.HeatTransfer.IdealFlowHeatTransfer
    constrainedby 
    Modelica.Fluid.Pipes.BaseClasses.HeatTransfer.PartialFlowHeatTransfer 
    "Wall heat transfer";
  Interfaces.HeatPorts_a[nNodes] heatPorts if use_HeatTransfer;

  HeatTransfer heatTransfer(
    redeclare each final package Medium = Medium,
    final n=n,
    final nParallel=nParallel,
    final surfaceAreas=perimeter*lengths,
    final lengths=lengths,
    final dimensions=dimensions,
    final roughnesses=roughnesses,
    final states=mediums.state,
    final vs = vs,
    final use_k = use_HeatTransfer) "Heat transfer model";
  final parameter Real[n] dxs = lengths/sum(lengths);
equation 
  Qb_flows = heatTransfer.Q_flows;
  // Wb_flow = v*A*dpdx + v*F_fric
  //         = v*A*dpdx + v*A*flowModel.dp_fg - v*A*dp_grav
  if n == 1 or useLumpedPressure then
    Wb_flows = dxs * ((vs*dxs)*(crossAreas*dxs)*((port_b.p - port_a.p) + sum(flowModel.dps_fg) - system.g*(dheights*mediums.d)))*nParallel;
  else
    if modelStructure == ModelStructure.av_vb or modelStructure == ModelStructure.av_b then
      Wb_flows[2:n-1] = {vs[i]*crossAreas[i]*((mediums[i+1].p - mediums[i-1].p)/2 + (flowModel.dps_fg[i-1]+flowModel.dps_fg[i])/2 - system.g*dheights[i]*mediums[i].d) for i in 2:n-1}*nParallel;
    else
      Wb_flows[2:n-1] = {vs[i]*crossAreas[i]*((mediums[i+1].p - mediums[i-1].p)/2 + (flowModel.dps_fg[i]+flowModel.dps_fg[i+1])/2 - system.g*dheights[i]*mediums[i].d) for i in 2:n-1}*nParallel;
    end if;
    if modelStructure == ModelStructure.av_vb then
      Wb_flows[1] = vs[1]*crossAreas[1]*((mediums[2].p - mediums[1].p)/2 + flowModel.dps_fg[1]/2 - system.g*dheights[1]*mediums[1].d)*nParallel;
      Wb_flows[n] = vs[n]*crossAreas[n]*((mediums[n].p - mediums[n-1].p)/2 + flowModel.dps_fg[n-1]/2 - system.g*dheights[n]*mediums[n].d)*nParallel;
    elseif modelStructure == ModelStructure.av_b then
      Wb_flows[1] = vs[1]*crossAreas[1]*((mediums[2].p - mediums[1].p)/2 + flowModel.dps_fg[1]/2 - system.g*dheights[1]*mediums[1].d)*nParallel;
      Wb_flows[n] = vs[n]*crossAreas[n]*((port_b.p - mediums[n-1].p)/1.5 + flowModel.dps_fg[n-1]/2+flowModel.dps_fg[n] - system.g*dheights[n]*mediums[n].d)*nParallel;
    elseif modelStructure == ModelStructure.a_vb then
      Wb_flows[1] = vs[1]*crossAreas[1]*((mediums[2].p - port_a.p)/1.5 + flowModel.dps_fg[1]+flowModel.dps_fg[2]/2 - system.g*dheights[1]*mediums[1].d)*nParallel;
      Wb_flows[n] = vs[n]*crossAreas[n]*((mediums[n].p - mediums[n-1].p)/2 + flowModel.dps_fg[n]/2 - system.g*dheights[n]*mediums[n].d)*nParallel;
    elseif modelStructure == ModelStructure.a_v_b then
      Wb_flows[1] = vs[1]*crossAreas[1]*((mediums[2].p - port_a.p)/1.5 + flowModel.dps_fg[1]+flowModel.dps_fg[2]/2 - system.g*dheights[1]*mediums[1].d)*nParallel;
      Wb_flows[n] = vs[n]*crossAreas[n]*((port_b.p - mediums[n-1].p)/1.5 + flowModel.dps_fg[n]/2+flowModel.dps_fg[n+1] - system.g*dheights[n]*mediums[n].d)*nParallel;
    else
      assert(true, "Unknown model structure");
    end if;
  end if;

  connect(heatPorts, heatTransfer.heatPorts);
end DynamicPipe;

Modelica.Fluid.Pipes.DynamicPipe.HeatTransfer Modelica.Fluid.Pipes.DynamicPipe.HeatTransfer

Wall heat transfer

Modelica.Fluid.Pipes.DynamicPipe.HeatTransfer

Parameters

TypeNameDefaultDescription
Ambient
CoefficientOfHeatTransferk0Heat transfer coefficient to ambient [W/(m2.K)]
TemperatureT_ambientsystem.T_ambientAmbient temperature [K]
Internal Interface
replaceable package MediumPartialMediumMedium in the component
Integern1Number of heat transfer segments
Booleanuse_kfalse= true to use k value for thermal isolation
Geometry
RealnParallel number of identical parallel flow devices

Connectors

TypeNameDescription
HeatPorts_aheatPorts[n]Heat port to component boundary

Modelica definition

replaceable model HeatTransfer =
    Modelica.Fluid.Pipes.BaseClasses.HeatTransfer.IdealFlowHeatTransfer
  constrainedby 
  Modelica.Fluid.Pipes.BaseClasses.HeatTransfer.PartialFlowHeatTransfer 
  "Wall heat transfer";

Automatically generated Fri Nov 12 16:31:13 2010.