Package with utility functions to compute two phase heat transfer characteristics
Information
Extends from Modelica.Icons.Package (Icon for standard packages).
Package Content
Local two phase heat transfer coefficient of straight pipe | horizontal condensation
Inputs
Outputs
Modelica definition
function kc_twoPhase_condensationHorizontal_KC
"Local two phase heat transfer coefficient of straight pipe | horizontal condensation"
//SOURCE_1: M.M. Shah. A general correlation for heat transfer during film condensation inside pipes.Int. J. Heat Mass Transfer, Vol.22, p.547-556, 1979.
//records
input Modelica.Fluid.Dissipation.Utilities.Records.HeatTransfer.TwoPhaseFlowHT_IN_con
IN_con;
input Modelica.Fluid.Dissipation.Utilities.Records.HeatTransfer.TwoPhaseFlowHT_IN_var
IN_var;
output SI.CoefficientOfHeatTransfer kc
"Local two phase heat transfer coefficient";
protected
Real MIN=Modelica.Constants.eps;
SI.Area A_cross=max(MIN, IN_con.A_cross) "Cross sectional area";
SI.Diameter d_hyd=max(MIN, 4*A_cross/max(MIN, IN_con.perimeter))
"Hydraulic diameter";
Real x_flow=max(0, min(1, abs(IN_var.x_flow))) "Mass flow rate quality";
Real p_red=max(MIN, abs(IN_var.pressure)/max(MIN, abs(IN_con.p_crit)))
"Reduced pressure";
SI.Velocity velocity=abs(IN_var.m_flow)/max(MIN, IN_var.rho_l*A_cross)
"Mean velocity";
SI.ReynoldsNumber Re_l=max(1, IN_var.rho_l*velocity*d_hyd/max(MIN, IN_var.eta_l))
"Reynolds number assuming (total) mass flux flowing as liquid";
SI.PrandtlNumber Pr_l=abs(IN_var.eta_l*IN_var.cp_l/max(MIN, IN_var.lambda_l))
"Prandtl number assuming (total) mass flux flowing as liquid";
//SOURCE_1: p.548, eq. 8: Considering two phase multiplier for condensation w.r.t. Shah
SI.CoefficientOfHeatTransfer kc_1ph=0.023*Re_l^0.8*Pr_l^0.4*IN_var.lambda_l
/d_hyd;
algorithm
kc := kc_1ph*((1 - x_flow)^0.8 + 3.8*x_flow^0.76*(1 - x_flow)^0.04/p_red^
0.38);
end kc_twoPhase_condensationHorizontal_KC;
Local two phase heat transfer coefficient of straight pipe | vertical boiling
Inputs
Outputs
Modelica definition
function kc_twoPhase_boilingVertical_KC
"Local two phase heat transfer coefficient of straight pipe | vertical boiling"
//SOURCE_1: Bejan,A.: HEAT TRANSFER HANDBOOK, Wiley, 2003.
//SOURCE_2: Gungor, K.E. and R.H.S. Winterton: A general correlation for flow boiling in tubes and annuli, Int.J. Heat Mass Transfer, Vol.29, p.351-358, 1986.
//records
input Modelica.Fluid.Dissipation.Utilities.Records.HeatTransfer.TwoPhaseFlowHT_IN_con
IN_con;
input Modelica.Fluid.Dissipation.Utilities.Records.HeatTransfer.TwoPhaseFlowHT_IN_var
IN_var;
output SI.CoefficientOfHeatTransfer kc
"Local two phase heat transfer coefficient";
protected
Real MIN=Modelica.Constants.eps;
SI.Area A_cross=max(MIN, IN_con.A_cross) "Cross sectional area";
SI.Diameter d_hyd=max(MIN, 4*A_cross/max(MIN, IN_con.perimeter))
"Hydraulic diameter";
Real mdot_A=abs(IN_var.m_flow)/A_cross "Mass flux";
Real x_flow=max(0, min(1, abs(IN_var.x_flow))) "Mass flow rate quality";
Real p_red=max(MIN, abs(IN_var.pressure)/max(MIN, abs(IN_con.p_crit)))
"Reduced pressure";
//SOURCE_1: p.674, sec. 9.8.3: Considering nucleate and convective boiling w.r.t. equation of Gungor-Winterton
SI.MassFlowRate mdot_l=abs(IN_var.m_flow)*(1 - x_flow)
"Mass flow rate of liquid only";
SI.Velocity velocity_l=mdot_l/max(MIN, IN_var.rho_l*A_cross)
"Mean velocity assuming liquid mass flow rate flows alone";
SI.ReynoldsNumber Re_l=max(1, IN_var.rho_l*velocity_l*d_hyd/max(MIN, IN_var.eta_l))
"Reynolds number assuming liquid mass flow rate flows alone";
SI.PrandtlNumber Pr_l=abs(IN_var.eta_l*IN_var.cp_l/max(MIN, IN_var.lambda_l))
"Prandtl number assuming liquid mass flow rate flows alone";
//SOURCE_1: p.674, eq. 9.98: Considering effect of heat flux on nucleate boiling with Boiling number
//Boiling number (Bo) is defined as ratio of actual heat flux to maximum heat flux necessary for complete evaporation of liquid
Real Bo=abs(IN_var.qdot_A)/(max(MIN, mdot_A*IN_var.dh_lg)) "Boiling number";
//SOURCE_1: p.673, eq. 9.94: Considering of Martinelli parameter w.r.t. equation of Chen
Real X_tt=abs(((1 - x_flow)/max(MIN, x_flow))^0.9*(IN_var.rho_g/max(MIN,
IN_var.rho_l))^0.5*(IN_var.eta_l/max(MIN, IN_var.eta_g))^0.1)
"Martinelli parameter";
//SOURCE_1: p.675, eq. 9.105: Considering of convection enhancement factor w.r.t. equation of of Gungor-Winterton
Real E_fc=1 + 24000*Bo^1.16 + 1.37*(1/max(MIN, X_tt))^0.86
"Enhancement factor for forced convection";
//SOURCE_1: p.675, eq. 9.105: Considering of boiling suppression factor w.r.t. equation of of Gungor-Winterton
Real S_nb=1/max(MIN, 1 + 1.15e-6*E_fc^2*Re_l^1.17)
"Suppression factor for nucleate boiling";
//SOURCE_1: p.672, eq. 9.91: Considering effect of forced convective boiling ew.r.t. equation of Dittus-Boelter
SI.CoefficientOfHeatTransfer kc_fc=0.023*Re_l^0.8*Pr_l^0.4*(IN_var.lambda_l
/d_hyd)
"Convective heat transfer coefficient assuming liquid mass flow rate only";
//SOURCE_1: p.675, eq. 9.107: Considering effect of nucleate boiling w.r.t. equation of Cooper
SI.CoefficientOfHeatTransfer kc_nb=55*p_red^0.12*(1/max(MIN,
Modelica.Math.log10(1/p_red))^0.55)*(1/max(MIN, IN_con.MM)^0.5)*IN_var.qdot_A
^0.67 "Nucleate boiling heat transfer coefficient";
//SOURCE_2: p.354, sec. final equations: Calculation of two phase heat transfer coefficient for vertical pipes w.r.t. equation of Gungor-Winterton
algorithm
kc := E_fc*kc_fc + S_nb*kc_nb;
end kc_twoPhase_boilingVertical_KC;
Local two phase heat transfer coefficient of straight pipe | horizontal boiling
Inputs
Outputs
Modelica definition
function kc_twoPhase_boilingHorizontal_KC
"Local two phase heat transfer coefficient of straight pipe | horizontal boiling"
//SOURCE_1: Bejan,A.: HEAT TRANSFER HANDBOOK, Wiley, 2003.
//SOURCE_2: Gungor, K.E. and R.H.S. Winterton: A general correlation for flow boiling in tubes and annuli, Int.J. Heat Mass Transfer, Vol.29, p.351-358, 1986.
import SMOOTH = Modelica.Fluid.Dissipation.Utilities.Functions.General.Stepsmoother;
//records
input Modelica.Fluid.Dissipation.Utilities.Records.HeatTransfer.TwoPhaseFlowHT_IN_con
IN_con;
input Modelica.Fluid.Dissipation.Utilities.Records.HeatTransfer.TwoPhaseFlowHT_IN_var
IN_var;
output SI.CoefficientOfHeatTransfer kc
"Local two phase heat transfer coefficient";
protected
Real MIN=Modelica.Constants.eps;
SI.Area A_cross=max(MIN, IN_con.A_cross) "Cross sectional area";
SI.Diameter d_hyd=max(MIN, 4*A_cross/max(MIN, IN_con.perimeter))
"Hydraulic diameter";
Real mdot_A=abs(IN_var.m_flow)/A_cross "Mass flux";
Real x_flow=max(0, min(1, abs(IN_var.x_flow))) "Mass flow rate quality";
Real p_red=max(MIN, abs(IN_var.pressure)/max(MIN, abs(IN_con.p_crit)))
"Reduced pressure";
//SOURCE_1: p.674, sec. 9.8.3: Considering nucleate and convective boiling w.r.t. equation of Gungor-Winterton
SI.MassFlowRate mdot_l=abs(IN_var.m_flow)*(1 - x_flow)
"Mass flow rate of liquid only";
SI.Velocity velocity_l=mdot_l/max(MIN, IN_var.rho_l*A_cross)
"Mean velocity assuming liquid mass flow rate flows alone";
SI.ReynoldsNumber Re_l=max(1, IN_var.rho_l*velocity_l*d_hyd/max(MIN, IN_var.eta_l))
"Reynolds number assuming liquid mass flow rate flows alone";
SI.PrandtlNumber Pr_l=abs(IN_var.eta_l*IN_var.cp_l/max(MIN, IN_var.lambda_l))
"Prandtl number assuming liquid mass flow rate flows alone";
//SOURCE_1: p.352, sec. Nomenclature: Considering effect of stratification w.r.t. Froude number
SI.FroudeNumber Fr_l=abs(mdot_A^2/max(MIN, IN_var.rho_l^2*9.81*d_hyd))
"Froude number assuming (total) mass flux flowing as liquid";
//SOURCE_1: p.674, eq. 9.98: Considering effect of heat flux on nucleate boiling with Boiling number
//Boiling number (Bo) is defined as ratio of actual heat flux to maximum heat flux necessary for complete evaporation of liquid
Real Bo=abs(IN_var.qdot_A)/(max(MIN, mdot_A*IN_var.dh_lg)) "Boiling number";
//SOURCE_1: p.673, eq. 9.94: Considering of Martinelli parameter w.r.t. equation of Chen
Real X_tt=abs(((1 - x_flow)/max(MIN, x_flow))^0.9*(IN_var.rho_g/max(MIN,
IN_var.rho_l))^0.5*(IN_var.eta_l/max(MIN, IN_var.eta_g))^0.1)
"Martinelli parameter";
//SOURCE_1: p.675, eq. 9.105: Considering of convection enhancement factor w.r.t. equation of Gungor-Winterton
Real E_fc=1 + 24000*Bo^1.16 + 1.37*(1/max(MIN, X_tt))^0.86
"Enhancement factor for forced convetion";
//SOURCE_1: p.675, eq. 9.105: Considering of boiling suppression factor w.r.t. equation of Gungor-Winterton
Real S_nb=1/max(MIN, 1 + 1.15e-6*E_fc^2*Re_l^1.17)
"Suppression factor for nucleate boiling";
//SOURCE_1: p.680, eq. 9.123: Considering correction of convection enhancement factor for horizontal pipes
Real E_fc_hor=SMOOTH(
0.049,
0.051,
Fr_l)*Fr_l^max(0, abs(0.1 - 2*Fr_l)) + SMOOTH(
0.051,
0.049,
Fr_l)
"Correction of enhancement factor for forced convection in horizontal pipes";
//SOURCE_1: p.680, eq. 9.124: Considering correction of boiling suppression factor for horizontal pipes
Real S_nb_hor=SMOOTH(
0.049,
0.051,
Fr_l)*Fr_l^0.5 + SMOOTH(
0.051,
0.049,
Fr_l)
"Correction of suppression factor for nucleate boiling in horizontal pipes";
//SOURCE_1: p.672, eq. 9.91: Considering effect of forced convective boiling ew.r.t. equation of Dittus-Boelter
SI.CoefficientOfHeatTransfer kc_fc=0.023*Re_l^0.8*Pr_l^0.4*(IN_var.lambda_l
/d_hyd)
"Convective heat transfer coefficient assuming liquid mass flow rate only";
//SOURCE_1: p.675, eq. 9.107: Considering effect of nucleate boiling w.r.t. equation of Cooper
SI.CoefficientOfHeatTransfer kc_nb=55*p_red^0.12*(1/max(MIN,
Modelica.Math.log10(1/p_red))^0.55)*(1/max(MIN, IN_con.MM^0.5))*abs(
IN_var.qdot_A)^0.67 "Nucleate boiling heat transfer coefficient";
//SOURCE_2: p.354, sec. final equations: Calculation of two phase heat transfer coefficient for horizontal pipes w.r.t. equation of Gungor-Winterton
algorithm
kc := E_fc*E_fc_hor*kc_fc + S_nb*S_nb_hor*kc_nb;
end kc_twoPhase_boilingHorizontal_KC;
Automatically generated Fri Nov 12 16:31:23 2010.