Modelica.Fluid.Dissipation.PressureLoss.Orifice

Package for pressure loss calculation of orifices

Information


Orifice

Sudden change

Calculation of the local pressure loss at a sudden change of the cross sectional areas (sudden expansion or sudden contraction) with sharp corners at turbulent flow regime for incompressible and single-phase fluid flow through arbitrary shaped cross sectional area (square, circular, etc.) considering a smooth surface. See more information.

Thick edged orifice

Calculation of pressure loss in thick edged orifices with sharp corners at overall flow regime for incompressible and single-phase fluid flow through an arbitrary shaped cross sectional area (square, circular, etc.) considering constant influence of surface roughness. See more information.

Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).

Package Content

NameDescription
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_DP dp_suddenChange_DP Pressure loss of orifice with sudden change in cross sectional area | calculate pressure loss | turbulent flow regime | smooth surface | arbitrary cross sectional area | without buffles | sharp edge
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_MFLOW dp_suddenChange_MFLOW Pressure loss of orifice with sudden change in cross sectional area | calculate mass flow rate | turbulent flow regime | smooth surface | arbitrary cross sectional area | without buffles | sharp edge
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_con dp_suddenChange_IN_con Input record for function dp_suddenChange_DP and dp_suddenChange_MFLOW
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_var dp_suddenChange_IN_var Input record for function dp_suddenChange_DP and dp_suddenChange_MFLOW
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_DP dp_thickEdgedOverall_DP Pressure loss of thick and sharp edged orifice | calculate pressure loss | overall flow regime | constant influence of friction | arbitrary cross sectional area
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_MFLOW dp_thickEdgedOverall_MFLOW Pressure loss of thick and sharp edged orifice | calculate mass flow rate | overall flow regime | constant influence of friction | arbitrary cross sectional area
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_con dp_thickEdgedOverall_IN_con Input record for function dp_thickEdgedOverall_DP and dp_thickEdgedOverall_MFLOW
Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_var dp_thickEdgedOverall_IN_var Input record for function dp_thickEdgedOverall_DP and dp_thickEdgedOverall_MFLOW


Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_DP

Pressure loss of orifice with sudden change in cross sectional area | calculate pressure loss | turbulent flow regime | smooth surface | arbitrary cross sectional area | without buffles | sharp edge

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_DP

Information


Calculation of the local pressure loss at a sudden change of the cross sectional areas (sudden expansion or sudden contraction) with sharp corners at turbulent flow regime for incompressible and single-phase fluid flow through arbitrary shaped cross sectional area (square, circular, etc.) considering a smooth surface. The flow direction determines the type of the transition. In case of the design flow a sudden expansion will be considered. At flow reversal a sudden contraction will be considered.

Generally this function is numerically best used for the incompressible case , where the mass flow rate (m_flow) is known (as state variable) in the used model and the corresponding pressure loss (DP) has to be calculated. On the other hand the function dp_suddenChange_MFLOW is numerically best used for the compressible case if the pressure loss (dp) is known (out of pressures as state variable) and the mass flow rate (M_FLOW) has to be calculated. See more information.

Extends from Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeSuddenChangeSection_d (Geometry figure for orifice with sudden change of cross sectional area).

Inputs

TypeNameDefaultDescription
Constant inputs
dp_suddenChange_IN_conIN_con Input record for function dp_suddenChange_DP
Variable inputs
dp_suddenChange_IN_varIN_var Input record for function dp_suddenChange_DP
Input
MassFlowRatem_flow Mass flow rate [kg/s]

Outputs

TypeNameDescription
PressureDPOutput for function dp_suddenChange_DP [Pa]

Modelica definition

function dp_suddenChange_DP 
  "Pressure loss of orifice with sudden change in cross sectional area | calculate pressure loss | turbulent flow regime | smooth surface | arbitrary cross sectional area | without buffles | sharp edge"
  //SOURCE_1: Idelchik, I.E.: HANDBOOK OF HYDRAULIC RESISTANCE, 3rd edition, 2006.
  //Notation of equations according to SOURCES

  import FD = Modelica.Fluid.Dissipation.PressureLoss.Orifice;

  //icon
  extends Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeSuddenChangeSection_d;

  import SMOOTH = Modelica.Fluid.Dissipation.Utilities.Functions.General.Stepsmoother;

  //input records
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_con
    IN_con "Input record for function dp_suddenChange_DP";
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_var
    IN_var "Input record for function dp_suddenChange_DP";
  input SI.MassFlowRate m_flow "Mass flow rate";

  //output variables
  output SI.Pressure DP "Output for function dp_suddenChange_DP";

protected 
  Real MIN=Modelica.Constants.eps;
  SI.ReynoldsNumber Re_min=1 "Minimum Reynolds number for linear smoothing";
  //restriction of local resistance coefficient zeta_LOC >> numerical improvement
  TYP.LocalResistanceCoefficient zeta_LOC_min=1e-3 
    "Minimal local resistance coefficient";

  SI.Area A_1=max(MIN, min(IN_con.A_1, IN_con.A_2)) 
    "Small cross sectional area of orifice";
  SI.Area A_2=max(MIN, max(IN_con.A_1, IN_con.A_2)) 
    "Large cross sectional area of orifice";
  SI.Length C_1=max(MIN, min(IN_con.C_1, IN_con.C_2)) 
    "Perimeter of small cross sectional area of orifice";
  SI.Length C_2=max(MIN, max(IN_con.C_1, IN_con.C_2)) 
    "perimeter of large cross sectional area of orifice";
  SI.Diameter d_hyd=4*A_1/C_1 
    "Hydraulic diameter of small cross sectional area of orifice";

  //sudden expansion  :  SOURCE_1, section 4, diagram 4-1, page 208
  //assumption of Re >= 3.3e3 for sudden expansion
  TYP.LocalResistanceCoefficient zeta_LOC_exp=max(zeta_LOC_min, (1 - A_1/A_2)^2);

  //sudden contraction:  SOURCE_1, section 4, diagram 4-9, page 216 / 217
  //assumption of Re >= 1.0e4 for sudden contraction
  TYP.LocalResistanceCoefficient zeta_LOC_con=max(zeta_LOC_min, 0.5*(1 - A_1/
      A_2)^0.75);

  SI.Velocity velocity_1=m_flow/(IN_var.rho*A_1) 
    "Mean velocity in smaller cross sectional area";

  //determine Reynolds number for small cross sectional area of orifice
  SI.ReynoldsNumber Re=IN_var.rho*d_hyd*velocity_1/IN_var.eta;

  //actual local resistance coefficient
  TYP.LocalResistanceCoefficient zeta_LOC=zeta_LOC_exp*SMOOTH(
      Re_min,
      0,
      Re) + zeta_LOC_con*SMOOTH(
      -Re_min,
      0,
      Re) + zeta_LOC_min*SMOOTH(
      0,
      Re_min,
      abs(Re));

  //Documentation

algorithm 
  DP := zeta_LOC*IN_var.rho/2*(IN_var.eta/IN_var.rho/d_hyd)^2*
    Modelica.Fluid.Dissipation.Utilities.Functions.General.SmoothPower(
          Re,
          Re_min,
          2);

end dp_suddenChange_DP;

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_MFLOW

Pressure loss of orifice with sudden change in cross sectional area | calculate mass flow rate | turbulent flow regime | smooth surface | arbitrary cross sectional area | without buffles | sharp edge

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_MFLOW

Information


Calculation of the local pressure loss at a sudden change of the cross sectional areas (sudden expansion or sudden contraction) with sharp corners at turbulent flow regime for incompressible and single-phase fluid flow through arbitrary shaped cross sectional area (square, circular, etc.) considering a smooth surface. The flow direction determines the type of the transition. In case of the design flow a sudden expansion will be considered. At flow reversal a sudden contraction will be considered.

Generally this function is numerically best used for the compressible case if the pressure loss (dp) is known (out of pressures as state variable) and the mass flow rate (M_FLOW) has to be calculated. On the other hand the function dp_suddenChange_DP is numerically best used for the incompressible case , where the mass flow rate (m_flow) is known (as state variable) in the used model and the corresponding pressure loss (DP) has to be calculated. See more information.

Extends from Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeSuddenChangeSection_d (Geometry figure for orifice with sudden change of cross sectional area).

Inputs

TypeNameDefaultDescription
Constant inputs
dp_suddenChange_IN_conIN_con Input record for function dp_suddenChange_MFLOW
Variable inputs
dp_suddenChange_IN_varIN_var Input record for function dp_suddenChange_MFLOW
Input
Pressuredp Pressure loss [Pa]

Outputs

TypeNameDescription
MassFlowRateM_FLOWOutput for function dp_suddenChange_MFLOW [kg/s]

Modelica definition

function dp_suddenChange_MFLOW 
  "Pressure loss of orifice with sudden change in cross sectional area | calculate mass flow rate | turbulent flow regime | smooth surface | arbitrary cross sectional area | without buffles | sharp edge"
  //SOURCE_1: Idelchik, I.E.: HANDBOOK OF HYDRAULIC RESISTANCE, 3rd edition, 2006.
  //Notation of equations according to SOURCES

  import FD = Modelica.Fluid.Dissipation.PressureLoss.Orifice;
  import SMOOTH = Modelica.Fluid.Dissipation.Utilities.Functions.General.Stepsmoother;

  //icon
  extends Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeSuddenChangeSection_d;

  //input records
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_con
    IN_con "Input record for function dp_suddenChange_MFLOW";
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_var
    IN_var "Input record for function dp_suddenChange_MFLOW";
  input SI.Pressure dp "Pressure loss";

  //output variables
  output SI.MassFlowRate M_FLOW "Output for function dp_suddenChange_MFLOW";

protected 
  Real MIN=Modelica.Constants.eps;
  SI.Pressure dp_min=1 "Pressure loss for linear smoothing";
  //restriction of local resistance coefficient zeta_LOC >> numerical improvement
  TYP.LocalResistanceCoefficient zeta_LOC_min=1e-3 
    "Minimal local resistance coefficient";

  SI.Area A_1=max(MIN, min(IN_con.A_1, IN_con.A_2)) 
    "Small cross sectional area of orifice";
  SI.Area A_2=max(MIN, max(IN_con.A_1, IN_con.A_2)) 
    "Large cross sectional area of orifice";

  //sudden expansion  :  SOURCE_1, section 4, diagram 4-1, page 208
  //assumption of Re >= 3.3e3 for sudden expansion
  TYP.LocalResistanceCoefficient zeta_LOC_exp=max(zeta_LOC_min, (1 - A_1/A_2)^2);

  //sudden contraction:  SOURCE_1, section 4, diagram 4-9, page 216 / 217
  //assumption of Re >= 1.0e4 for sudden contraction
  TYP.LocalResistanceCoefficient zeta_LOC_con=max(zeta_LOC_min, 0.5*(1 - A_1/
      A_2)^0.75);

  //actual local resistance coefficient
  TYP.LocalResistanceCoefficient zeta_LOC=max(zeta_LOC_min, zeta_LOC_exp*SMOOTH(
      dp_min,
      0,
      dp) + zeta_LOC_con*SMOOTH(
      -dp_min,
      0,
      dp)) + zeta_LOC_min*SMOOTH(
      0,
      dp_min,
      abs(dp));

  //Documentation

algorithm 
  M_FLOW := IN_var.rho*A_1*
    Modelica.Fluid.Dissipation.Utilities.Functions.General.SmoothPower(
          dp,
          dp_min,
          0.5)*(max(MIN, 2/(IN_var.rho*zeta_LOC)))^0.5;
end dp_suddenChange_MFLOW;

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_con Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_con

Input record for function dp_suddenChange_DP and dp_suddenChange_MFLOW

Information


This record is used as  input record  for the pressure loss functions
 dp_suddenChange_DP and
 dp_suddenChange_MFLOW.

Extends from Modelica.Fluid.Dissipation.Utilities.Records.PressureLoss.SuddenChange (Input for sudden change of diameter).

Parameters

TypeNameDefaultDescription
Orifice
AreaA_1PI*0.01^2/4Small cross sectional area of orifice [m2]
AreaA_2A_1Large cross sectional area of orifice [m2]
LengthC_1PI*0.01Small perimeter of orifice [m]
LengthC_2C_1Large perimeter of orifice [m]

Modelica definition

record dp_suddenChange_IN_con 
  "Input record for function dp_suddenChange_DP and dp_suddenChange_MFLOW"

  //orifice variables
  extends Modelica.Fluid.Dissipation.Utilities.Records.PressureLoss.SuddenChange;

end dp_suddenChange_IN_con;

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_var Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_suddenChange_IN_var

Input record for function dp_suddenChange_DP and dp_suddenChange_MFLOW

Information


This record is used as  input record  for the pressure loss functions
 dp_suddenChange_DP and
 dp_suddenChange_MFLOW.

Extends from Modelica.Fluid.Dissipation.Utilities.Records.General.PressureLoss (Base record for fluid properties for pressure loss).

Parameters

TypeNameDefaultDescription
Fluid properties
DynamicViscosityeta Dynamic viscosity of fluid [Pa.s]
Densityrho Density of fluid [kg/m3]

Modelica definition

record dp_suddenChange_IN_var 
  "Input record for function dp_suddenChange_DP and dp_suddenChange_MFLOW"

  //fluid property variables
  extends Modelica.Fluid.Dissipation.Utilities.Records.General.PressureLoss;

end dp_suddenChange_IN_var;

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_DP

Pressure loss of thick and sharp edged orifice | calculate pressure loss | overall flow regime | constant influence of friction | arbitrary cross sectional area

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_DP

Information


Calculation of pressure loss in thick edged orifices with sharp corners at overall flow regime for incompressible and single-phase fluid flow through an arbitrary shaped cross sectional area (square, circular, etc.) considering constant influence of surface roughness.

Generally this function is numerically best used for the incompressible case , where the mass flow rate (m_flow) is known (as state variable) in the used model and the corresponding pressure loss (DP) has to be calculated. On the other hand the function dp_thickEdgedOverall_MFLOW is numerically best used for the compressible case if the pressure loss (dp) is known (out of pressures as state variable) and the mass flow rate (M_FLOW) has to be calculated. See more information.

Extends from Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeThickEdged_d (Geometry figure for orifice with thick edged vena contraction).

Inputs

TypeNameDefaultDescription
Constant inputs
dp_thickEdgedOverall_IN_conIN_con Input record for function dp_thickEdgedOverall_DP
Variable inputs
dp_thickEdgedOverall_IN_varIN_var Input record for function dp_thickEdgedOverall_DP
Input
MassFlowRatem_flow Mass flow rate [kg/s]

Outputs

TypeNameDescription
PressureDPOutput for function dp_thickEdgedOverall_DP [Pa]

Modelica definition

function dp_thickEdgedOverall_DP 
  "Pressure loss of thick and sharp edged orifice | calculate pressure loss | overall flow regime | constant influence of friction  | arbitrary cross sectional area"
  //SOURCE_1: Idelchik, I.E.: HANDBOOK OF HYDRAULIC RESISTANCE, 3rd edition, 2006.
  //Notation of equations according to SOURCES

  import FD = Modelica.Fluid.Dissipation.PressureLoss.Orifice;
  import SMOOTH = Modelica.Fluid.Dissipation.Utilities.Functions.General.Stepsmoother;

  //icon
  extends Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeThickEdged_d;

  //input records
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_con
    IN_con "Input record for function dp_thickEdgedOverall_DP";
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_var
    IN_var "Input record for function dp_thickEdgedOverall_DP";

  input SI.MassFlowRate m_flow "Mass flow rate";

  //output variables
  output SI.Pressure DP "Output for function dp_thickEdgedOverall_DP";

protected 
  Real MIN=Modelica.Constants.eps;

  TYP.DarcyFrictionFactor lambda_FRI=0.02 
    "Assumption for darcy friction factor in vena contraction according to SOURCE_1";
  SI.ReynoldsNumber Re_min=1;
  SI.ReynoldsNumber Re_lim=1e3 "Limitation for laminar regime if dp is target";

  SI.Area A_0=IN_con.A_0 "Cross sectional area of vena contraction";
  SI.Area A_1=IN_con.A_1 "Cross sectional area of large cross sectional area";
  SI.Diameter d_hyd_0=max(MIN, 4*A_0/IN_con.C_0) 
    "Hydraulic diameter of vena contraction";
  SI.Diameter d_hyd_1=max(MIN, 4*A_1/IN_con.C_1) 
    "Hydraulic diameter of large cross sectional area";
  SI.Length l=IN_con.L "Length of vena contraction";
  SI.Length l_bar=IN_con.L/d_hyd_0;

  //SOURCE_1, section 4, diagram 4-15, page 222:
  Real phi=0.25 + 0.535*min(l_bar, 2.4)^8/(0.05 + min(l_bar, 2.4)^8);
  Real tau=(max(2.4 - l_bar, 0))*10^(-phi);

  TYP.PressureLossCoefficient zeta_TOT_1=max(MIN, (0.5*(1 - A_0/A_1)^0.75 + tau
      *(1 - A_0/A_1)^1.375 + (1 - A_0/A_1)^2 + lambda_FRI*l/d_hyd_0)*(A_1/A_0)^
      2) 
    "Pressure loss coefficient w.r.t. to flow velocity in large cross sectional area";
  SI.Velocity v_0=m_flow/(IN_var.rho*A_0) "Mean velocity in vena contraction";
  SI.ReynoldsNumber Re=IN_var.rho*v_0*d_hyd_0/max(MIN, IN_var.eta) 
    "Reynolds number in vena contraction";

  //Documentation

algorithm 
  DP := zeta_TOT_1*IN_var.rho/2*(IN_var.eta/IN_var.rho/d_hyd_1)^2*
    Modelica.Fluid.Dissipation.Utilities.Functions.General.SmoothPower(
          Re,
          Re_min,
          2)*(d_hyd_1/d_hyd_0*A_0/A_1)^2;
end dp_thickEdgedOverall_DP;

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_MFLOW

Pressure loss of thick and sharp edged orifice | calculate mass flow rate | overall flow regime | constant influence of friction | arbitrary cross sectional area

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_MFLOW

Information


Calculation of pressure loss in thick edged orifices with sharp corners at overall flow regime for incompressible and single-phase fluid flow through an arbitrary shaped cross sectional area (square, circular, etc.) considering constant influence of surface roughness.

Generally this function is numerically best used for the compressible case , where the pressure loss (dp) is known (out of pressures as state variable) in the used model and the corresponding mass flow rate (M_FLOW) has to be calculated. On the other hand the function dp_thickEdgedOverall_DP is numerically best used for the incompressible case if the mass flow rate (m_flow) is known (as state variable) and the pressure loss (DP) has to be calculated. See more information.

Extends from Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeThickEdged_d (Geometry figure for orifice with thick edged vena contraction).

Inputs

TypeNameDefaultDescription
Constant inputs
dp_thickEdgedOverall_IN_conIN_con Input record for function dp_thickEdgedOverall_MFLOW
Variable inputs
dp_thickEdgedOverall_IN_varIN_var Input record for function dp_thickEdgedOverall_MFLOW
Input
Pressuredp Pressure loss [Pa]

Outputs

TypeNameDescription
MassFlowRateM_FLOWOutput for function dp_thickEdgedOverall_MFLOW [kg/s]

Modelica definition

function dp_thickEdgedOverall_MFLOW 
  "Pressure loss of thick and sharp edged orifice | calculate mass flow rate | overall flow regime | constant influence of friction  | arbitrary cross sectional area"
  //SOURCE_1: Idelchik, I.E.: HANDBOOK OF HYDRAULIC RESISTANCE, 3rd edition, 2006.
  //Notation of equations according to SOURCES

  import FD = Modelica.Fluid.Dissipation.PressureLoss.Orifice;
  import SMOOTH = Modelica.Fluid.Dissipation.Utilities.Functions.General.Stepsmoother;

  //icon
  extends Modelica.Fluid.Dissipation.Utilities.Icons.PressureLoss.OrificeThickEdged_d;

  //input records
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_con
    IN_con "Input record for function dp_thickEdgedOverall_MFLOW";
  input Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_var
    IN_var "Input record for function dp_thickEdgedOverall_MFLOW";

  input SI.Pressure dp "Pressure loss";

  //output variables
  output SI.MassFlowRate M_FLOW 
    "Output for function dp_thickEdgedOverall_MFLOW";

protected 
  Real MIN=Modelica.Constants.eps;
  TYP.DarcyFrictionFactor lambda_FRI=0.02 
    "Assumption for darcy friction factor in vena contraction according to SOURCE_1";
  SI.ReynoldsNumber Re_lim=1e3 "Limitation for laminar regime if dp is target";

  SI.Area A_0=IN_con.A_0 "Cross sectional area of vena contraction";
  SI.Area A_1=IN_con.A_1 "Large cross sectional area";
  SI.Diameter d_hyd_0=max(MIN, 4*A_0/IN_con.C_0) 
    "Hydraulic diameter of vena contraction";
  SI.Diameter d_hyd_1=max(MIN, 4*A_1/IN_con.C_1) 
    "Hydraulic diameter of large cross sectional area";
  SI.Length l=IN_con.L "Length of vena contraction";
  SI.Length l_bar=IN_con.L/d_hyd_0;

  //SOURCE_1, section 4, diagram 4-15, page 222:
  Real phi=0.25 + 0.535*min(l_bar, 2.4)^8/(0.05 + min(l_bar, 2.4)^8);
  Real tau=(max(2.4 - l_bar, 0))*10^(-phi);

  TYP.PressureLossCoefficient zeta_TOT_1=max(MIN, (0.5*(1 - A_0/A_1)^0.75 + tau
      *(1 - A_0/A_1)^1.375 + (1 - A_0/A_1)^2 + lambda_FRI*l/d_hyd_0)*(A_1/A_0)^
      2) 
    "Pressure loss coefficient w.r.t. to flow velocity in large cross sectional area";

  //Documentation

algorithm 
  M_FLOW := IN_var.rho*A_1*
    Modelica.Fluid.Dissipation.Utilities.Functions.General.SmoothPower(
          dp,
          IN_con.dp_smooth,
          0.5)/(0.5*IN_var.rho*zeta_TOT_1)^0.5;
end dp_thickEdgedOverall_MFLOW;

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_con Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_con

Input record for function dp_thickEdgedOverall_DP and dp_thickEdgedOverall_MFLOW

Information


This record is used as  input record  for the pressure loss functions
 dp_thickEdgedOverall_DP and
 dp_thickEdgedOverall_MFLOW.

Extends from Modelica.Fluid.Dissipation.Utilities.Records.PressureLoss.Orifice (Input for orifice).

Parameters

TypeNameDefaultDescription
Orifice
AreaA_00.1*A_1Cross sectional area of vena contraction [m2]
LengthC_00.1*C_1Perimeter of vena contraction [m]
AreaA_1PI*0.01^2/4Large cross sectional area of orifice [m2]
LengthC_1PI*0.01Large perimeter of orifice [m]
LengthL1e-3Length of vena contraction [m]
Linearisation
Pressuredp_smooth1Start linearisation for decreasing pressure loss [Pa]

Modelica definition

record dp_thickEdgedOverall_IN_con 
  "Input record for function dp_thickEdgedOverall_DP and dp_thickEdgedOverall_MFLOW"

  //orifice variables
  extends Modelica.Fluid.Dissipation.Utilities.Records.PressureLoss.Orifice;

  //linearisation
  SI.Pressure dp_smooth(min=Modelica.Constants.eps) = 1 
    "Start linearisation for decreasing pressure loss";

end dp_thickEdgedOverall_IN_con;

Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_var Modelica.Fluid.Dissipation.PressureLoss.Orifice.dp_thickEdgedOverall_IN_var

Input record for function dp_thickEdgedOverall_DP and dp_thickEdgedOverall_MFLOW

Information


This record is used as  input record  for the pressure loss functions
 dp_thickEdgedOverall_DP  and
 dp_thickEdgedOverall_MFLOW .

Extends from Modelica.Fluid.Dissipation.Utilities.Records.General.PressureLoss (Base record for fluid properties for pressure loss).

Parameters

TypeNameDefaultDescription
Fluid properties
DynamicViscosityeta Dynamic viscosity of fluid [Pa.s]
Densityrho Density of fluid [kg/m3]

Modelica definition

record dp_thickEdgedOverall_IN_var 
  "Input record for function dp_thickEdgedOverall_DP and dp_thickEdgedOverall_MFLOW"

  //fluid property variables
  extends Modelica.Fluid.Dissipation.Utilities.Records.General.PressureLoss;

end dp_thickEdgedOverall_IN_var;

Automatically generated Fri Nov 12 16:31:22 2010.