Modelica.Electrical.QuasiStationary.MultiPhase.Examples

Test examples

Information


Examples to demonstrate the usage of quasistationary electric components.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

NameDescription
Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingStar BalancingStar Balancing an unsymmetrical star-connected load
Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingDelta BalancingDelta Balancing an unsymmetrical delta-connected load


Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingStar Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingStar

Balancing an unsymmetrical star-connected load

Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingStar

Information


For the unsymmetrical load (resistor, capacitor and inductor) the parameters inductance L and capacitance C are choosen such way that the neutral current (see currentSensor0) is zero.

P.Vaske, Berechnung von Drehstromschaltungen (German, Calculation of polyphase circuits), Teubner 1973, page 42, example 18

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
VoltageV100Source Voltage [V]
Frequencyf50Source frequency [Hz]
ResistanceR10Load resistance [Ohm]
InductanceL(R*sqrt(3))/(2*Modelica.Cons...Load inductance [H]
CapacitanceC1/(R*sqrt(3))/(2*Modelica.Co...Load capacitance [F]

Modelica definition

model BalancingStar "Balancing an unsymmetrical star-connected load"
  extends Modelica.Icons.Example;
  parameter Integer m=3 "Number of phases";
  parameter Modelica.SIunits.Voltage V = 100 "Source Voltage";
  parameter Modelica.SIunits.Frequency f = 50 "Source frequency";
  parameter Modelica.SIunits.Resistance R = 10 "Load resistance";
  parameter Modelica.SIunits.Inductance L = (R*sqrt(3))/(2*Modelica.Constants.pi*f) 
    "Load inductance";
  parameter Modelica.SIunits.Capacitance C = 1/(R*sqrt(3))/(2*Modelica.Constants.pi*f) 
    "Load capacitance";
  QuasiStationary.MultiPhase.Sources.VoltageSource voltageSource(
    m=m,
    f=f,
    V=fill(V, m),
    phi={-(j - 1)*2*Modelica.Constants.pi/m for j in 1:m});
  QuasiStationary.MultiPhase.Basic.Star star(m=m);
  QuasiStationary.SinglePhase.Basic.Ground ground;
  QuasiStationary.MultiPhase.Basic.PlugToPin_p plugToPin_p1(                    m=m, k=1);
  QuasiStationary.MultiPhase.Basic.PlugToPin_p plugToPin_p2(                    k=2, m=m);
  QuasiStationary.MultiPhase.Basic.PlugToPin_p plugToPin_p3(                    k=3, m=m);
  QuasiStationary.MultiPhase.Sensors.PowerSensor powerSensor(
                m=m);
  QuasiStationary.MultiPhase.Sensors.CurrentSensor currentSensor(
                  m=m);
  QuasiStationary.SinglePhase.Basic.Resistor resistor(R_ref=R);
  QuasiStationary.SinglePhase.Basic.Capacitor capacitor(C=C);
  QuasiStationary.SinglePhase.Basic.Inductor inductor(L=L);
  QuasiStationary.MultiPhase.Basic.Star star2(m=m);
  QuasiStationary.MultiPhase.Basic.PlugToPin_n plugToPin_n1(                    m=m, k=1);
  QuasiStationary.MultiPhase.Basic.PlugToPin_n plugToPin_n2(                    k=2, m=m);
  QuasiStationary.MultiPhase.Basic.PlugToPin_n plugToPin_n3(                    k=3, m=m);
  QuasiStationary.SinglePhase.Sensors.CurrentSensor currentSensor0;
equation 
  connect(ground.pin, star.pin_n);
  connect(star.plug_p, voltageSource.plug_n);
  connect(voltageSource.plug_p, powerSensor.currentP);
  connect(powerSensor.currentN, currentSensor.plug_p);
  connect(powerSensor.voltageP, powerSensor.currentP);
  connect(powerSensor.voltageN, star.plug_p);
  connect(currentSensor.plug_n, plugToPin_p2.plug_p);
  connect(currentSensor.plug_n, plugToPin_p3.plug_p);
  connect(currentSensor.plug_n, plugToPin_p1.plug_p);
  connect(plugToPin_p1.pin_p, inductor.pin_p);
  connect(plugToPin_p2.pin_p, capacitor.pin_p);
  connect(plugToPin_p3.pin_p, resistor.pin_p);
  connect(inductor.pin_n, plugToPin_n1.pin_n);
  connect(capacitor.pin_n, plugToPin_n2.pin_n);
  connect(resistor.pin_n, plugToPin_n3.pin_n);
  connect(plugToPin_n1.plug_n, star2.plug_p);
  connect(plugToPin_n2.plug_n, star2.plug_p);
  connect(plugToPin_n3.plug_n, star2.plug_p);
  connect(star2.pin_n, currentSensor0.pin_p);
  connect(currentSensor0.pin_n, star.pin_n);
end BalancingStar;

Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingDelta Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingDelta

Balancing an unsymmetrical delta-connected load

Modelica.Electrical.QuasiStationary.MultiPhase.Examples.BalancingDelta

Information


For the unsymmetrical load (resistor, capacitor and inductor) the parameters inductance L and capacitance C are choosen such way that the magnitudes of the three phase currents (see currentSensor12, currentSensor23, currentSensor31) are equal.

P.Vaske, Berechnung von Drehstromschaltungen (German, Calculation of polyphase circuits), Teubner 1973, page 43, example 23

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
VoltageV_LL100Source voltage line-to-line [V]
Frequencyf50Source frequency [Hz]
ResistanceR10Load resistance [Ohm]
InductanceL(R*sqrt(3))/(2*Modelica.Cons...Load inductance [H]
CapacitanceC1/(R*sqrt(3))/(2*Modelica.Co...Load capacitance [F]

Modelica definition

model BalancingDelta 
  "Balancing an unsymmetrical delta-connected load"
  extends Modelica.Icons.Example;
  parameter Integer m=3 "Number of phases";
  parameter Modelica.SIunits.Voltage V_LL = 100 "Source voltage line-to-line";
  parameter Modelica.SIunits.Frequency f = 50 "Source frequency";
  parameter Modelica.SIunits.Resistance R = 10 "Load resistance";
  parameter Modelica.SIunits.Inductance L = (R*sqrt(3))/(2*Modelica.Constants.pi*f) 
    "Load inductance";
  parameter Modelica.SIunits.Capacitance C = 1/(R*sqrt(3))/(2*Modelica.Constants.pi*f) 
    "Load capacitance";
  QuasiStationary.MultiPhase.Sources.VoltageSource voltageSource(
    m=m,
    f=f,
    V=fill(V_LL, m),
    phi={-(j - 1)*2*Modelica.Constants.pi/m for j in 1:m});
  QuasiStationary.MultiPhase.Basic.Star star(m=m);
  QuasiStationary.SinglePhase.Basic.Ground ground;
  QuasiStationary.MultiPhase.Basic.PlugToPin_p plugToPin_p1(                    m=m, k=1);
  QuasiStationary.MultiPhase.Basic.PlugToPin_p plugToPin_p2(                    k=2, m=m);
  QuasiStationary.MultiPhase.Basic.PlugToPin_p plugToPin_p3(                    k=3, m=m);
  QuasiStationary.MultiPhase.Sensors.PowerSensor powerSensor(
                m=m);
  QuasiStationary.MultiPhase.Sensors.CurrentSensor currentSensor(
                  m=m);
  QuasiStationary.SinglePhase.Basic.Resistor resistor(R_ref=R);
  QuasiStationary.SinglePhase.Basic.Capacitor capacitor(C=C);
  QuasiStationary.SinglePhase.Basic.Inductor inductor(L=L);
  QuasiStationary.SinglePhase.Sensors.CurrentSensor currentSensor12;
  QuasiStationary.SinglePhase.Sensors.CurrentSensor currentSensor23;
  QuasiStationary.SinglePhase.Sensors.CurrentSensor currentSensor31;
  Modelica.ComplexBlocks.ComplexMath.ComplexToPolar complexToPolar[m];
equation 
  connect(ground.pin, star.pin_n);
  connect(star.plug_p, voltageSource.plug_n);
  connect(voltageSource.plug_p, powerSensor.currentP);
  connect(powerSensor.currentP, powerSensor.voltageP);
  connect(powerSensor.currentN, currentSensor.plug_p);
  connect(powerSensor.voltageN, star.plug_p);
  connect(currentSensor.plug_n, plugToPin_p2.plug_p);
  connect(currentSensor.plug_n, plugToPin_p1.plug_p);
  connect(currentSensor.plug_n, plugToPin_p3.plug_p);
  connect(currentSensor12.pin_p, plugToPin_p1.pin_p);
  connect(currentSensor12.pin_n, capacitor.pin_p);
  connect(capacitor.pin_n, plugToPin_p2.pin_p);
  connect(plugToPin_p2.pin_p, currentSensor23.pin_p);
  connect(currentSensor23.pin_n, inductor.pin_p);
  connect(inductor.pin_n, plugToPin_p3.pin_p);
  connect(plugToPin_p1.pin_p, resistor.pin_n);
  connect(resistor.pin_p, currentSensor31.pin_n);
  connect(currentSensor31.pin_p, plugToPin_p3.pin_p);
  connect(currentSensor.y, complexToPolar.u);
end BalancingDelta;

Automatically generated Fri Nov 12 16:29:40 2010.