Modelica.Electrical.QuasiStationary.SinglePhase.Basic

Basic components for AC singlephase models

Information


This package hosts basic models for quasi stationary single phase circuits. Quasi stationary theory for single phase circuits can be found in the references.

See also

MultiPhase.Basic

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

NameDescription
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Ground Ground Electrical ground
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Resistor Resistor Singlephase linear resistor
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Conductor Conductor Singlephase linear conductor
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Capacitor Capacitor Singlephase linear capacitor
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Inductor Inductor Singlephase linear inductor
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableResistor VariableResistor Singlephase variable resistor
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableConductor VariableConductor Singlephase variable conductor
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableCapacitor VariableCapacitor Singlephase variable capacitor
Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableInductor VariableInductor Singlephase variable inductor


Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Ground Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Ground

Electrical ground

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Ground

Information


Ground of a single phase circuit. The potential at the ground node is zero. Every electrical circuit, e.g., a series resonance example, has to contain at least one ground object.

Connectors

TypeNameDescription
PositivePinpin 

Modelica definition

model Ground "Electrical ground"

  Interfaces.PositivePin pin;
equation 
  Connections.potentialRoot(pin.reference, 256);
  if Connections.isRoot(pin.reference) then
    pin.reference.gamma = 0;
  end if;
  pin.v = Complex(0);
end Ground;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Resistor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Resistor

Singlephase linear resistor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Resistor

Information


The linear resistor connects the complex voltage v with the complex current i by i*R = v. The resistance R is allowed to be positive, zero, or negative.

The resistor model also has an optional conditional heat port. A linear temperature dependency of the resistance for an enabled heat port is also taken into account.

See also

Conductor, Capacitor, Inductor, Variable resistor, Variable conductor, Variable capacitor, Variable inductor

Extends from Interfaces.OnePort (Two pins, current through), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
ResistanceR_ref Reference resistance at T_ref [Ohm]
TemperatureT_ref293.15Reference temperature [K]
LinearTemperatureCoefficientalpha_ref0Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref)) [1/K]
BooleanuseHeatPortfalse=true, if HeatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false [K]

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin
HeatPort_aheatPort 

Modelica definition

model Resistor "Singlephase linear resistor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.real;
  import Modelica.ComplexMath.conj;
  parameter Modelica.SIunits.Resistance R_ref(start=1) 
    "Reference resistance at T_ref";
  parameter Modelica.SIunits.Temperature T_ref=293.15 "Reference temperature";
  parameter Modelica.SIunits.LinearTemperatureCoefficient alpha_ref=0 
    "Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))";
  extends Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort(T = T_ref);
  Modelica.SIunits.Resistance R_actual 
    "Resistance = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))";
equation 
  assert((1 + alpha_ref*(T_heatPort - T_ref)) >= Modelica.Constants.eps, "Temperature outside scope of model!");
  R_actual = R_ref*(1 + alpha_ref*(T_heatPort - T_ref));
  v = R_actual*i;
  LossPower = real(v*conj(i));
end Resistor;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Conductor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Conductor

Singlephase linear conductor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Conductor

Information



The linear conductor connects the voltage v with the current i by i = v*G. The conductance G is allowed to be positive, zero, or negative.

The conductor model also has an optional conditional heat port. A linear temperature dependency of the resistance for an enabled heat port is also taken into account.

See also

Resistor, Capacitor, Inductor, Variable resistor, Variable conductor, Variable capacitor, Variable inductor

Extends from Interfaces.OnePort (Two pins, current through), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
ConductanceG_ref Reference conductance at T_ref [S]
TemperatureT_ref293.15Reference temperature [K]
LinearTemperatureCoefficientalpha_ref0Temperature coefficient of conductance (G_actual = G_ref/(1 + alpha_ref*(heatPort.T - T_ref)) [1/K]
BooleanuseHeatPortfalse=true, if HeatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false [K]

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin
HeatPort_aheatPort 

Modelica definition

model Conductor "Singlephase linear conductor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.real;
  import Modelica.ComplexMath.conj;
  parameter Modelica.SIunits.Conductance G_ref(start=1) 
    "Reference conductance at T_ref";
  parameter Modelica.SIunits.Temperature T_ref=293.15 "Reference temperature";
  parameter Modelica.SIunits.LinearTemperatureCoefficient alpha_ref=0 
    "Temperature coefficient of conductance (G_actual = G_ref/(1 + alpha_ref*(heatPort.T - T_ref))";
  extends Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort(T = T_ref);
  Modelica.SIunits.Conductance G_actual 
    "Conductance = G_ref/(1 + alpha_ref*(heatPort.T - T_ref))";
equation 
  assert((1 + alpha_ref*(T_heatPort - T_ref)) >= Modelica.Constants.eps, "Temperature outside scope of model!");
  G_actual = G_ref/(1 + alpha_ref*(T_heatPort - T_ref));
  i = G_actual*v;
  LossPower = real(v*conj(i));
end Conductor;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Capacitor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Capacitor

Singlephase linear capacitor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Capacitor

Information



The linear capacitor connects the voltage v with the current i by i = j*ω*C*v. The capacitance C is allowed to be positive, zero, or negative.

See also

Resistor, Conductor, Inductor, Variable resistor, Variable conductor, Variable capacitor, Variable inductor

Extends from Interfaces.OnePort (Two pins, current through).

Parameters

TypeNameDefaultDescription
CapacitanceC Capacitance [F]

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin

Modelica definition

model Capacitor "Singlephase linear capacitor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.j;
  parameter Modelica.SIunits.Capacitance C(start=1) "Capacitance";
equation 
  i = j*omega*C*v;
end Capacitor;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Inductor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Inductor

Singlephase linear inductor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.Inductor

Information



The linear inductor connects the voltage v with the current i by v = j*ω*L*i. The Inductance L is allowed to be positive, zero, or negative.

See also

Resistor, Conductor, Capacitor, Variable resistor, Variable conductor, Variable capacitor, Variable inductor

Extends from Interfaces.OnePort (Two pins, current through).

Parameters

TypeNameDefaultDescription
InductanceL Inductance [H]

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin

Modelica definition

model Inductor "Singlephase linear inductor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.j;
  parameter Modelica.SIunits.Inductance L(start=1) "Inductance";
equation 
  v = j*omega*L*i;
end Inductor;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableResistor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableResistor

Singlephase variable resistor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableResistor

Information



The linear resistor connects the voltage v with the current i by i*R = v. The resistance R is given as input signal.

The variable resistor model also has an optional conditional heat port. A linear temperature dependency of the resistance for an enabled heat port is also taken into account.

Note

A zero crossing of the R signal could cause singularities due to the actual structure of the connected network.

The variable resistor model also has an optional conditional heat port. A linear temperature dependency of the resistance for an enabled heat port is also taken into account.

See also

Resistor, Conductor, Capacitor, Inductor, Variable conductor, Variable capacitor, Variable inductor

Extends from Interfaces.OnePort (Two pins, current through), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
TemperatureT_ref293.15Reference temperature [K]
LinearTemperatureCoefficientalpha_ref0Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref)) [1/K]
BooleanuseHeatPortfalse=true, if HeatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false [K]

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin
HeatPort_aheatPort 
input RealInputR_ref 

Modelica definition

model VariableResistor "Singlephase variable resistor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.real;
  import Modelica.ComplexMath.conj;
  parameter Modelica.SIunits.Temperature T_ref=293.15 "Reference temperature";
  parameter Modelica.SIunits.LinearTemperatureCoefficient alpha_ref=0 
    "Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))";
  extends Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort(T = T_ref);
  Modelica.SIunits.Resistance R_actual 
    "Resistance = R_ref*(1 + alpha_ref*(heatPort.T - T_ref))";
  Modelica.Blocks.Interfaces.RealInput R_ref;
equation 
  assert((1 + alpha_ref*(T_heatPort - T_ref)) >= Modelica.Constants.eps, "Temperature outside scope of model!");
  R_actual = R_ref*(1 + alpha_ref*(T_heatPort - T_ref));
  v = R_actual*i;
  LossPower = real(v*conj(i));
end VariableResistor;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableConductor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableConductor

Singlephase variable conductor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableConductor

Information



The linear conductor connects the voltage v with the current i by i = G*v. The conductance G is given as input signal.

The variable conductor model also has an optional conditional heat port. A linear temperature dependency of the resistance for an enabled heat port is also taken into account.

See also

Resistor, Conductor, Capacitor, Inductor, Variable resistor, Variable capacitor, Variable inductor

Extends from Interfaces.OnePort (Two pins, current through), Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
TemperatureT_ref293.15Reference temperature [K]
LinearTemperatureCoefficientalpha_ref0Temperature coefficient of conductance (G_actual = G_ref/(1 + alpha_ref*(heatPort.T - T_ref)) [1/K]
BooleanuseHeatPortfalse=true, if HeatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false [K]

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin
HeatPort_aheatPort 
input RealInputG_ref 

Modelica definition

model VariableConductor "Singlephase variable conductor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.real;
  import Modelica.ComplexMath.conj;
  parameter Modelica.SIunits.Temperature T_ref=293.15 "Reference temperature";
  parameter Modelica.SIunits.LinearTemperatureCoefficient alpha_ref=0 
    "Temperature coefficient of conductance (G_actual = G_ref/(1 + alpha_ref*(heatPort.T - T_ref))";
  extends Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort(T = T_ref);
  Modelica.SIunits.Conductance G_actual 
    "Conductance = G_ref/(1 + alpha_ref*(heatPort.T - T_ref))";
  Modelica.Blocks.Interfaces.RealInput G_ref;
equation 
  assert((1 + alpha_ref*(T_heatPort - T_ref)) >= Modelica.Constants.eps, "Temperature outside scope of model!");
  G_actual = G_ref/(1 + alpha_ref*(T_heatPort - T_ref));
  i = G_actual*v;
  LossPower = real(v*conj(i));
end VariableConductor;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableCapacitor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableCapacitor

Singlephase variable capacitor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableCapacitor

Information



The linear capacitor connects the voltage v with the current i by i = j*ω*C*v. The capacitance C is given as input signal.

Note

The abstraction of a variable capacitor at quasi stationary operation assumes:
.

See also

Resistor, Conductor, Capacitor, Inductor, Variable resistor, Variable conductor, Variable inductor

Extends from Interfaces.OnePort (Two pins, current through).

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin
input RealInputC 

Modelica definition

model VariableCapacitor "Singlephase variable capacitor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.j;
  Modelica.Blocks.Interfaces.RealInput C;
equation 
  i = j*omega*C*v;
end VariableCapacitor;

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableInductor Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableInductor

Singlephase variable inductor

Modelica.Electrical.QuasiStationary.SinglePhase.Basic.VariableInductor

Information



The linear inductor connects the branch voltage v with the branch current i by v = j*ω*L*i. The inductance L is given as input signal.

Note

The abstraction of a variable inductor at quasi stationary operation assumes:

See also

Resistor, Conductor, Capacitor, Inductor, Variable resistor, Variable conductor, Variable capacitor

Extends from Interfaces.OnePort (Two pins, current through).

Connectors

TypeNameDescription
PositivePinpin_pPositive pin
NegativePinpin_nNegative pin
input RealInputL 

Modelica definition

model VariableInductor "Singlephase variable inductor"
  extends Interfaces.OnePort;
  import Modelica.ComplexMath.j;
  Modelica.Blocks.Interfaces.RealInput L;
equation 
  v = j*omega*L*i;
end VariableInductor;

Automatically generated Fri Nov 12 16:29:23 2010.