Modelica.Electrical.Machines.BasicMachines.Components

Machine components like AirGaps

Information


This package contains components for modeling electrical machines, specially threephase induction machines, based on space phasor theory.
These models use package SpacePhasors.

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

NameDescription
Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGap PartialAirGap Partial airgap model
Modelica.Electrical.Machines.BasicMachines.Components.AirGapS AirGapS Airgap in stator-fixed coordinate system
Modelica.Electrical.Machines.BasicMachines.Components.AirGapR AirGapR Airgap in rotor-fixed coordinate system
Modelica.Electrical.Machines.BasicMachines.Components.Inductor Inductor Space phasor inductor
Modelica.Electrical.Machines.BasicMachines.Components.SquirrelCage SquirrelCage Squirrel Cage
Modelica.Electrical.Machines.BasicMachines.Components.DamperCage DamperCage Squirrel Cage
Modelica.Electrical.Machines.BasicMachines.Components.ElectricalExcitation ElectricalExcitation Electrical excitation
Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnet PermanentMagnet Permanent magnet excitation
Modelica.Electrical.Machines.BasicMachines.Components.InductorDC InductorDC Ideal linear electrical inductor for electrical DC machines
Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGapDC PartialAirGapDC Partial airgap model of a DC machine
Modelica.Electrical.Machines.BasicMachines.Components.AirGapDC AirGapDC Linear airgap model of a DC machine
Modelica.Electrical.Machines.BasicMachines.Components.CompoundDCExcitation CompoundDCExcitation Compound excitation = shunt + series
Modelica.Electrical.Machines.BasicMachines.Components.PartialCore PartialCore Partial model of transformer core with 3 windings
Modelica.Electrical.Machines.BasicMachines.Components.IdealCore IdealCore Ideal transformer with 3 windings
Modelica.Electrical.Machines.BasicMachines.Components.BasicTransformer BasicTransformer Partial model of threephase transformer


Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGap Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGap

Partial airgap model

Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGap

Information


Partial model of the airgap, using only equations.

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Integerp Number of pole pairs

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
SpacePhasorspacePhasor_s 
SpacePhasorspacePhasor_r 

Modelica definition

partial model PartialAirGap "Partial airgap model"
  parameter Integer m=3 "Number of phases";
  parameter Integer p(min=1) "Number of pole pairs";
  output Modelica.SIunits.Torque tauElectrical;
  Modelica.SIunits.Angle gamma "Rotor displacement angle";
  Modelica.SIunits.Current i_ss[2] 
    "Stator current space phasor with respect to the stator fixed frame";
  Modelica.SIunits.Current i_sr[2] 
    "Stator current space phasor with respect to the rotor fixed frame";
  Modelica.SIunits.Current i_rs[2] 
    "Rotor current space phasor with respect to the stator fixed frame";
  Modelica.SIunits.Current i_rr[2] 
    "Rotor current space phasor with respect to the rotor fixed frame";
  Modelica.SIunits.MagneticFlux psi_ms[2] 
    "Magnetizing flux phasor with respect to the stator fixed frame";
  Modelica.SIunits.MagneticFlux psi_mr[2] 
    "Magnetizing flux phasor with respect to the rotor fixed frame";
  Real RotationMatrix[2,2] "Matrix of rotation from rotor to stator";
public 
  Modelica.Mechanics.Rotational.Interfaces.Flange_a flange;
  Modelica.Mechanics.Rotational.Interfaces.Flange_a support 
    "Support at which the reaction torque is acting";
  Machines.Interfaces.SpacePhasor spacePhasor_s;
  Machines.Interfaces.SpacePhasor spacePhasor_r;
equation 
  // mechanical angle of the rotor of an equivalent 2-pole machine
  gamma=p*(flange.phi-support.phi);
  RotationMatrix={{+cos(gamma),-sin(gamma)},{+sin(gamma),+cos(gamma)}};
  i_ss = spacePhasor_s.i_;
  i_ss = RotationMatrix*i_sr;
  i_rr = spacePhasor_r.i_;
  i_rs = RotationMatrix*i_rr;
  // Stator voltage induction
  spacePhasor_s.v_ = der(psi_ms);
  // Rotor voltage induction
  spacePhasor_r.v_ = der(psi_mr);
  // Electromechanical torque (cross product of current and flux space phasor)
  tauElectrical = m/2*p*(spacePhasor_s.i_[2]*psi_ms[1] - spacePhasor_s.i_[1]*psi_ms[2]);
  flange.tau = -tauElectrical;
  support.tau = tauElectrical;
end PartialAirGap;

Modelica.Electrical.Machines.BasicMachines.Components.AirGapS Modelica.Electrical.Machines.BasicMachines.Components.AirGapS

Airgap in stator-fixed coordinate system

Modelica.Electrical.Machines.BasicMachines.Components.AirGapS

Information


Model of the airgap in stator-fixed coordinate system, using only equations.

Extends from PartialAirGap (Partial airgap model).

Parameters

TypeNameDefaultDescription
InductanceLm Main field inductance [H]
Integerm3Number of phases
Integerp Number of pole pairs

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
SpacePhasorspacePhasor_s 
SpacePhasorspacePhasor_r 

Modelica definition

model AirGapS "Airgap in stator-fixed coordinate system"
  parameter Modelica.SIunits.Inductance Lm "Main field inductance";
  extends PartialAirGap;
  Modelica.SIunits.Current i_ms[2] 
    "Magnetizing current space phasor with respect to the stator fixed frame";
protected 
  parameter Modelica.SIunits.Inductance L[2,2]={{Lm,0},{0,Lm}} 
    "Inductance matrix";
equation 
  // Magnetizing current with respect to the stator reference frame
  i_ms = i_ss + i_rs;
  // Magnetizing flux linkage with respect to the stator reference frame
  psi_ms = L*i_ms;
  // Magnetizing flux linkage with respect to the rotor reference frame
  psi_mr = transpose(RotationMatrix)*psi_ms;
end AirGapS;

Modelica.Electrical.Machines.BasicMachines.Components.AirGapR Modelica.Electrical.Machines.BasicMachines.Components.AirGapR

Airgap in rotor-fixed coordinate system

Modelica.Electrical.Machines.BasicMachines.Components.AirGapR

Information


Model of the airgap in rotor-fixed coordinate system, using only equations.

Extends from PartialAirGap (Partial airgap model).

Parameters

TypeNameDefaultDescription
InductanceLmd Main field inductance d-axis [H]
InductanceLmq Main field inductance q-axis [H]
Integerm3Number of phases
Integerp Number of pole pairs

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
SpacePhasorspacePhasor_s 
SpacePhasorspacePhasor_r 

Modelica definition

model AirGapR "Airgap in rotor-fixed coordinate system"
  parameter Modelica.SIunits.Inductance Lmd "Main field inductance d-axis";
  parameter Modelica.SIunits.Inductance Lmq "Main field inductance q-axis";
  extends PartialAirGap;
  Modelica.SIunits.Current i_mr[2] 
    "Magnetizing current space phasor with respect to the rotor fixed frame";
protected 
  parameter Modelica.SIunits.Inductance L[2,2]={{Lmd,0},{0,Lmq}} 
    "Inductance matrix";
equation 
  // Magnetizing current with respect to the rotor reference frame
  i_mr = i_sr + i_rr;
  // Main flux linkage with respect to the rotor reference frame
  psi_mr = L*i_mr;
  // Main flux linkage with respect to the stator reference frame
  psi_ms = RotationMatrix*psi_mr;
end AirGapR;

Modelica.Electrical.Machines.BasicMachines.Components.Inductor Modelica.Electrical.Machines.BasicMachines.Components.Inductor

Space phasor inductor

Modelica.Electrical.Machines.BasicMachines.Components.Inductor

Information


This is a model of an inductor, described with space phasors.

Parameters

TypeNameDefaultDescription
InductanceL[2] Inductance of both axes [H]

Connectors

TypeNameDescription
SpacePhasorspacePhasor_a 
SpacePhasorspacePhasor_b 

Modelica definition

model Inductor "Space phasor inductor"
  parameter Modelica.SIunits.Inductance L[2] "Inductance of both axes";
  Modelica.SIunits.Voltage v_[2];
  Modelica.SIunits.Current i_[2];
  Machines.Interfaces.SpacePhasor spacePhasor_a;
  Machines.Interfaces.SpacePhasor spacePhasor_b;
equation 
  spacePhasor_a.i_ + spacePhasor_b.i_ = zeros(2);
  v_ = spacePhasor_a.v_ - spacePhasor_b.v_;
  i_ = spacePhasor_a.i_;
  v_[1] = L[1]*der(i_[1]);
  v_[2] = L[2]*der(i_[2]);
end Inductor;

Modelica.Electrical.Machines.BasicMachines.Components.SquirrelCage Modelica.Electrical.Machines.BasicMachines.Components.SquirrelCage

Squirrel Cage

Modelica.Electrical.Machines.BasicMachines.Components.SquirrelCage

Information


Model of a squirrel cage / symmetrical damper cage in two axis.

The squirrel cage has an optional (conditional) HeatPort, which can be enabled or disabled by the Boolean parameter useHeatPort. Temperatures of both axis are the same, both losses are added. Material properties alpha of both axis are the same.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
InductanceLrsigma Rotor stray inductance per phase translated to stator [H]
ResistanceRr Rotor resistance per phase translated to stator at T_ref [Ohm]
TemperatureT_ref293.15Reference temperature [K]
LinearTemperatureCoefficientalpha0Temperature coefficient of resistance at T_ref [1/K]
BooleanuseHeatPortfalse=true, if HeatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false [K]

Connectors

TypeNameDescription
HeatPort_aheatPort 
SpacePhasorspacePhasor_r 

Modelica definition

model SquirrelCage "Squirrel Cage"
  parameter Modelica.SIunits.Inductance Lrsigma 
    "Rotor stray inductance per phase translated to stator";
  parameter Modelica.SIunits.Resistance Rr 
    "Rotor resistance per phase translated to stator at T_ref";
  parameter Modelica.SIunits.Temperature T_ref=293.15 "Reference temperature";
  parameter Modelica.SIunits.LinearTemperatureCoefficient alpha=0 
    "Temperature coefficient of resistance at T_ref";
  extends Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort(T = T_ref);
  Modelica.SIunits.Resistance Rr_actual 
    "Actual resistance = Rr*(1 + alpha*(T_heatPort - T_ref))";
  Machines.Interfaces.SpacePhasor spacePhasor_r;
equation 
  assert((1 + alpha*(T_heatPort - T_ref)) >= Modelica.Constants.eps, "Temperature outside scope of model!");
  Rr_actual = Rr*(1 + alpha*(T_heatPort - T_ref));
  spacePhasor_r.v_ = Rr_actual*spacePhasor_r.i_ + Lrsigma*der(spacePhasor_r.i_);
  2/3*LossPower = Rr_actual*(spacePhasor_r.i_[1]*spacePhasor_r.i_[1] + spacePhasor_r.i_[2]*spacePhasor_r.i_[2]);
end SquirrelCage;

Modelica.Electrical.Machines.BasicMachines.Components.DamperCage Modelica.Electrical.Machines.BasicMachines.Components.DamperCage

Squirrel Cage

Modelica.Electrical.Machines.BasicMachines.Components.DamperCage

Information


Model of an usymmetrical damper cage in two axis.

The damper cage has an optional (conditional) HeatPort, which can be enabled or disabled by the Boolean parameter useHeatPort. Temperatures of both axis are the same, both losses are added. Material properties alpha can be set differently for both d- and q-axis, although reference temperature for both resistances is the same.

Extends from Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort (Partial model to include a conditional HeatPort in order to describe the power loss via a thermal network).

Parameters

TypeNameDefaultDescription
InductanceLrsigmad Stray inductance in d-axis per phase translated to stator [H]
InductanceLrsigmaq Stray inductance in q-axis per phase translated to stator [H]
ResistanceRrd Resistance in d-axis per phase translated to stator at T_ref [Ohm]
ResistanceRrq Resistance in q-axis per phase translated to stator at T_ref [Ohm]
TemperatureT_ref293.15Reference temperature of both resistances in d- and q-axis [K]
LinearTemperatureCoefficientalpha0Temperature coefficient of both resistances in d- and q-axis at T_ref [1/K]
BooleanuseHeatPortfalse=true, if HeatPort is enabled
TemperatureTT_refFixed device temperature if useHeatPort = false [K]

Connectors

TypeNameDescription
HeatPort_aheatPort 
SpacePhasorspacePhasor_r 

Modelica definition

model DamperCage "Squirrel Cage"
  parameter Modelica.SIunits.Inductance Lrsigmad 
    "Stray inductance in d-axis per phase translated to stator";
  parameter Modelica.SIunits.Inductance Lrsigmaq 
    "Stray inductance in q-axis per phase translated to stator";
  parameter Modelica.SIunits.Resistance Rrd 
    "Resistance in d-axis per phase translated to stator at T_ref";
  parameter Modelica.SIunits.Resistance Rrq 
    "Resistance in q-axis per phase translated to stator at T_ref";
  parameter Modelica.SIunits.Temperature T_ref=293.15 
    "Reference temperature of both resistances in d- and q-axis";
  parameter Modelica.SIunits.LinearTemperatureCoefficient alpha=0 
    "Temperature coefficient of both resistances in d- and q-axis at T_ref";
  extends Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort(T = T_ref);
  Modelica.SIunits.Resistance Rrd_actual 
    "Actual resistance = Rrd*(1 + alpha*(T_heatPort - T_ref))";
  Modelica.SIunits.Resistance Rrq_actual 
    "Actual resistance = Rrq*(1 + alpha*(T_heatPort - T_ref))";
  Machines.Interfaces.SpacePhasor spacePhasor_r;
equation 
  assert((1 + alpha*(T_heatPort - T_ref)) >= Modelica.Constants.eps, "Temperature outside scope of model!");
  Rrd_actual = Rrd*(1 + alpha*(T_heatPort - T_ref));
  Rrq_actual = Rrq*(1 + alpha*(T_heatPort - T_ref));
  spacePhasor_r.v_[1] = Rrd_actual * spacePhasor_r.i_[1] + Lrsigmad * der(spacePhasor_r.i_[1]);
  spacePhasor_r.v_[2] = Rrq_actual * spacePhasor_r.i_[2] + Lrsigmaq * der(spacePhasor_r.i_[2]);
  2/3*LossPower = Rrd_actual*spacePhasor_r.i_[1]*spacePhasor_r.i_[1] + Rrq_actual*spacePhasor_r.i_[2]*spacePhasor_r.i_[2];
end DamperCage;

Modelica.Electrical.Machines.BasicMachines.Components.ElectricalExcitation Modelica.Electrical.Machines.BasicMachines.Components.ElectricalExcitation

Electrical excitation

Modelica.Electrical.Machines.BasicMachines.Components.ElectricalExcitation

Information


Model of an electrical excitation, converting excitation to space phasor.

Parameters

TypeNameDefaultDescription
RealturnsRatio Ratio stator current / excitation current

Connectors

TypeNameDescription
SpacePhasorspacePhasor_r 
PositivePinpin_ep 
NegativePinpin_en 

Modelica definition

model ElectricalExcitation "Electrical excitation"
  parameter Real turnsRatio(start=1) 
    "Ratio stator current / excitation current";
  Modelica.SIunits.Current ie "Excitation current";
  Modelica.SIunits.Voltage ve "Excitation voltage";
  Machines.Interfaces.SpacePhasor spacePhasor_r;
  Modelica.Electrical.Analog.Interfaces.PositivePin pin_ep;
  Modelica.Electrical.Analog.Interfaces.NegativePin pin_en;
equation 
  pin_ep.i + pin_en.i = 0;
  ie = +pin_ep.i;
  ve = pin_ep.v - pin_en.v;
  spacePhasor_r.i_ = {-ie*turnsRatio,0};
  ve = spacePhasor_r.v_[1]*turnsRatio*3/2;
end ElectricalExcitation;

Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnet Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnet

Permanent magnet excitation

Modelica.Electrical.Machines.BasicMachines.Components.PermanentMagnet

Information


Model of a permanent magnet excitation, characterized by an equivalent excitation current.

Parameters

TypeNameDefaultDescription
CurrentIe Equivalent excitation current [A]

Connectors

TypeNameDescription
SpacePhasorspacePhasor_r 

Modelica definition

model PermanentMagnet "Permanent magnet excitation"
  parameter Modelica.SIunits.Current Ie "Equivalent excitation current";
  Machines.Interfaces.SpacePhasor spacePhasor_r;
equation 
  spacePhasor_r.i_ = {-Ie,0};
end PermanentMagnet;

Modelica.Electrical.Machines.BasicMachines.Components.InductorDC Modelica.Electrical.Machines.BasicMachines.Components.InductorDC

Ideal linear electrical inductor for electrical DC machines

Modelica.Electrical.Machines.BasicMachines.Components.InductorDC

Information


The linear inductor connects the branch voltage v with the branch current i by v = L * di/dt. If quasiStationary == false, the electrical transients are neglected, i.e., the voltage drop is zero.

Extends from Modelica.Electrical.Analog.Interfaces.OnePort (Component with two electrical pins p and n and current i from p to n).

Parameters

TypeNameDefaultDescription
InductanceL Inductance [H]
BooleanquasiStationary No electrical transients if true

Connectors

TypeNameDescription
PositivePinpPositive pin (potential p.v > n.v for positive voltage drop v)
NegativePinnNegative pin

Modelica definition

model InductorDC 
  "Ideal linear electrical inductor for electrical DC machines"
  extends Modelica.Electrical.Analog.Interfaces.OnePort;
  parameter Modelica.SIunits.Inductance L(start=1) "Inductance";
  parameter Boolean quasiStationary(start=false) 
    "No electrical transients if true";
equation 
  v = if quasiStationary then 0 else L*der(i);
end InductorDC;

Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGapDC Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGapDC

Partial airgap model of a DC machine

Modelica.Electrical.Machines.BasicMachines.Components.PartialAirGapDC

Information


Linear model of the airgap (without saturation effects) of a DC machine, using only equations.
Induced excitation voltage is calculated from der(flux), where flux is defined by excitation inductance times excitation current. If quasiStationary == false, the electrical transients are neglected, i.e., the induced excitation voltage is zero.
Induced armature voltage is calculated from flux times angular velocity.

Parameters

TypeNameDefaultDescription
BooleanquasiStationary No electrical transients if true
RealturnsRatio Ratio of armature turns over number of turns of the excitation winding

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
PositivePinpin_ap 
PositivePinpin_ep 
NegativePinpin_an 
NegativePinpin_en 

Modelica definition

partial model PartialAirGapDC "Partial airgap model of a DC machine"
  parameter Boolean quasiStationary(start=false) 
    "No electrical transients if true";
  parameter Real turnsRatio 
    "Ratio of armature turns over number of turns of the excitation winding";
  output Modelica.SIunits.AngularVelocity w "Angluar velocity";
  Modelica.SIunits.Voltage vei 
    "Voltage drop across field excitation inductance";
  Modelica.SIunits.Current ie "Excitation current";
  Modelica.SIunits.MagneticFlux psi_e "Excitation flux";
  Modelica.SIunits.Voltage vai "Induced armature voltage";
  Modelica.SIunits.Current ia "Armature current";
  output Modelica.SIunits.Torque tauElectrical;
  Modelica.Mechanics.Rotational.Interfaces.Flange_a flange;
  Modelica.Mechanics.Rotational.Interfaces.Flange_a support 
    "Support at which the reaction torque is acting";
  Modelica.Electrical.Analog.Interfaces.PositivePin pin_ap;
  Modelica.Electrical.Analog.Interfaces.PositivePin pin_ep;
  Modelica.Electrical.Analog.Interfaces.NegativePin pin_an;
  Modelica.Electrical.Analog.Interfaces.NegativePin pin_en;
equation 
  // armature pins
  vai = pin_ap.v - pin_an.v;
  ia = + pin_ap.i;
  ia = - pin_an.i;
  // excitation pins
  vei = pin_ep.v - pin_en.v;
  ie = + pin_ep.i;
  ie = - pin_en.i;
  // induced voltage across field excitation inductance
  vei = if quasiStationary then 0 else der(psi_e);
  // mechanical speed
  w = der(flange.phi)-der(support.phi);
  // induced armature voltage
  vai = turnsRatio * psi_e * w;
  // electrical torque (ia is perpendicular to flux)
  tauElectrical = turnsRatio * psi_e * ia;
  flange.tau = -tauElectrical;
  support.tau = tauElectrical;
end PartialAirGapDC;

Modelica.Electrical.Machines.BasicMachines.Components.AirGapDC Modelica.Electrical.Machines.BasicMachines.Components.AirGapDC

Linear airgap model of a DC machine

Modelica.Electrical.Machines.BasicMachines.Components.AirGapDC

Information


Linear model of the airgap (without saturation effects) of a DC machine, using only equations.
Induced excitation voltage is calculated from der(flux), where flux is defined by excitation inductance times excitation current.
Induced armature voltage is calculated from flux times angular velocity.

Extends from PartialAirGapDC (Partial airgap model of a DC machine).

Parameters

TypeNameDefaultDescription
BooleanquasiStationary No electrical transients if true
RealturnsRatio Ratio of armature turns over number of turns of the excitation winding
InductanceLe Excitation inductance [H]

Connectors

TypeNameDescription
Flange_aflange 
Flange_asupportSupport at which the reaction torque is acting
PositivePinpin_ap 
PositivePinpin_ep 
NegativePinpin_an 
NegativePinpin_en 

Modelica definition

model AirGapDC "Linear airgap model of a DC machine"
  extends PartialAirGapDC;
  parameter Modelica.SIunits.Inductance Le "Excitation inductance";
equation 
  // excitation flux: linearly dependent on excitation current
  psi_e = Le * ie;
end AirGapDC;

Modelica.Electrical.Machines.BasicMachines.Components.CompoundDCExcitation Modelica.Electrical.Machines.BasicMachines.Components.CompoundDCExcitation

Compound excitation = shunt + series

Modelica.Electrical.Machines.BasicMachines.Components.CompoundDCExcitation

Information


Model to compound the shunt excitation current and the series excitation current to the total excitation current w.r.t. shunt excitation.
This model is intended to be placed between shunt and series excitation pins and the airgap;
the connection to airgap has to be grounded at one point.

Parameters

TypeNameDefaultDescription
RealexcitationTurnsRatio Ratio of series excitation turns over shunt excitation turns

Connectors

TypeNameDescription
PositivePinpin_pPositive pin to airgap
NegativePinpin_nNegative pin to airgap
PositivePinpin_epPositive pin to shunt excitation
NegativePinpin_enNegative pin to shunt excitation
PositivePinpin_sepPositive pin to series excitation
NegativePinpin_senNegative pin to series excitation

Modelica definition

model CompoundDCExcitation "Compound excitation = shunt + series"
  parameter Real excitationTurnsRatio 
    "Ratio of series excitation turns over shunt excitation turns";
  Modelica.SIunits.Voltage v = pin_p.v - pin_n.v;
  Modelica.SIunits.Current i = pin_p.i;
  Modelica.SIunits.Voltage ve = pin_ep.v - pin_en.v;
  Modelica.SIunits.Current ie = pin_ep.i;
  Modelica.SIunits.Voltage vse = pin_sep.v - pin_sen.v;
  Modelica.SIunits.Current ise = pin_sep.i;
  Modelica.Electrical.Analog.Interfaces.PositivePin pin_p 
    "Positive pin to airgap";
  Modelica.Electrical.Analog.Interfaces.NegativePin pin_n 
    "Negative pin to airgap";
  Modelica.Electrical.Analog.Interfaces.PositivePin pin_ep 
    "Positive pin to shunt excitation";
  Modelica.Electrical.Analog.Interfaces.NegativePin pin_en 
    "Negative pin to shunt excitation";
  Modelica.Electrical.Analog.Interfaces.PositivePin pin_sep 
    "Positive pin to series excitation";
  Modelica.Electrical.Analog.Interfaces.NegativePin pin_sen 
    "Negative pin to series excitation";
equation 
//current balances
  pin_p.i + pin_n.i = 0;
  pin_ep.i + pin_en.i = 0;
  pin_sep.i + pin_sen.i = 0;
//compound currents
  -i = ie + excitationTurnsRatio*ise;
//induced voltages
  ve = v;
  vse = v*excitationTurnsRatio;
end CompoundDCExcitation;

Modelica.Electrical.Machines.BasicMachines.Components.PartialCore Modelica.Electrical.Machines.BasicMachines.Components.PartialCore

Partial model of transformer core with 3 windings

Modelica.Electrical.Machines.BasicMachines.Components.PartialCore

Information


Partial model of transformer core with 3 windings; saturation function flux versus magentizing current has to be defined.

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Realn12 Turns ratio 1:2
Realn13 Turns ratio 1:3

Connectors

TypeNameDescription
PositivePlugplug_p1 
NegativePlugplug_n1 
PositivePlugplug_p2 
NegativePlugplug_n2 
PositivePlugplug_p3 
NegativePlugplug_n3 

Modelica definition

partial model PartialCore 
  "Partial model of transformer core with 3 windings"
  parameter Integer m(final min=1) = 3 "Number of phases";
  parameter Real n12(start=1) "Turns ratio 1:2";
  parameter Real n13(start=1) "Turns ratio 1:3";
  Modelica.SIunits.Voltage v1[m] = plug_p1.pin.v  - plug_n1.pin.v;
  Modelica.SIunits.Current i1[m] = plug_p1.pin.i;
  Modelica.SIunits.Voltage v2[m] = plug_p2.pin.v  - plug_n2.pin.v;
  Modelica.SIunits.Current i2[m] = plug_p2.pin.i;
  Modelica.SIunits.Voltage v3[m] = plug_p3.pin.v  - plug_n3.pin.v;
  Modelica.SIunits.Current i3[m] = plug_p3.pin.i;
  Modelica.SIunits.Current im[m] = i1 + i2/n12 + i3/n13 "Magnetizing current";
  Modelica.Electrical.MultiPhase.Interfaces.PositivePlug plug_p1(final m=
        m);
  Modelica.Electrical.MultiPhase.Interfaces.NegativePlug plug_n1(final m=
        m);
  Modelica.Electrical.MultiPhase.Interfaces.PositivePlug plug_p2(final m=
        m);
  Modelica.Electrical.MultiPhase.Interfaces.NegativePlug plug_n2(final m=
        m);
  Modelica.Electrical.MultiPhase.Interfaces.PositivePlug plug_p3(final m=
        m);
  Modelica.Electrical.MultiPhase.Interfaces.NegativePlug plug_n3(final m=
        m);
equation 
  plug_p1.pin.i + plug_n1.pin.i = zeros(m);
  plug_p2.pin.i + plug_n2.pin.i = zeros(m);
  plug_p3.pin.i + plug_n3.pin.i = zeros(m);
end PartialCore;

Modelica.Electrical.Machines.BasicMachines.Components.IdealCore Modelica.Electrical.Machines.BasicMachines.Components.IdealCore

Ideal transformer with 3 windings

Modelica.Electrical.Machines.BasicMachines.Components.IdealCore

Information


Ideal transformer with 3 windings: no magnetizing current.

Extends from PartialCore (Partial model of transformer core with 3 windings).

Parameters

TypeNameDefaultDescription
Integerm3Number of phases
Realn12 Turns ratio 1:2
Realn13 Turns ratio 1:3

Connectors

TypeNameDescription
PositivePlugplug_p1 
NegativePlugplug_n1 
PositivePlugplug_p2 
NegativePlugplug_n2 
PositivePlugplug_p3 
NegativePlugplug_n3 

Modelica definition

model IdealCore "Ideal transformer with 3 windings"

  extends PartialCore;
equation 
  im = zeros(m);
  v1 = n12*v2;
  v1 = n13*v3;
end IdealCore;

Modelica.Electrical.Machines.BasicMachines.Components.BasicTransformer Modelica.Electrical.Machines.BasicMachines.Components.BasicTransformer

Partial model of threephase transformer

Modelica.Electrical.Machines.BasicMachines.Components.BasicTransformer

Information


Partialmodel of a threephase transformer, containing primary and secondary resistances and stray inductances, as well as the iron core.
Circuit layout (vector group) of primary and secondary windings have to be defined.
Exactly the same as Interfaces.PartialBasicTransformer, included for compatibility reasons.

Extends from Machines.Interfaces.PartialBasicTransformer (Partial model of threephase transformer).

Parameters

TypeNameDefaultDescription
Realn Ratio primary voltage (line-to-line) / secondary voltage (line-to-line)
BooleanuseThermalPortfalseEnable / disable (=fixed temperatures) thermal port
Operational temperatures
TemperatureT1Operational Operational temperature of primary resistance [K]
TemperatureT2Operational Operational temperature of secondary resistance [K]
Nominal resistances and inductances
ResistanceR1 Primary resistance per phase at TRef [Ohm]
TemperatureT1Ref Reference temperature of primary resistance [K]
LinearTemperatureCoefficient20alpha20_1 Temperature coefficient of primary resistance at 20 degC [1/K]
InductanceL1sigma Primary stray inductance per phase [H]
ResistanceR2 Secondary resistance per phase at TRef [Ohm]
TemperatureT2Ref Reference temperature of secondary resistance [K]
LinearTemperatureCoefficient20alpha20_2 Temperature coefficient of secondary resistance at 20 degC [1/K]
InductanceL2sigma Secondary stray inductance per phase [H]

Connectors

TypeNameDescription
PositivePlugplug1Primary plug
NegativePlugplug2Secondary plug
ThermalPortTransformerthermalPort 

Modelica definition

partial model BasicTransformer 
  "Partial model of threephase transformer"
  extends Machines.Interfaces.PartialBasicTransformer;
//dummy will be removed when conversion script is applicable
end BasicTransformer;

Automatically generated Fri Nov 12 16:29:01 2010.