Package Frames.Quaternions contains type definitions and functions to transform rotational frame quantities with quaternions. Functions of this package are currently only utilized in MultiBody.Parts.Body components, when quaternions shall be used as parts of the body states. Some functions are also used in a new Modelica package for B-Spline interpolation that is able to interpolate paths consisting of position vectors and orientation objects.
In the table below an example is given for every function definition. The used variables have the following declaration:
Quaternions.Orientation Q, Q1, Q2, Q_rel, Q_inv; Real[3,3] T, T_inv; Real[3] v1, v2, w1, w2, n_x, n_y, n_z, res_ori, phi; Real[6] res_equal; Real L, angle;
Function/type | Description |
---|---|
Orientation Q; | New type defining a quaternion object that describes the rotation of frame 1 into frame 2. |
der_Orientation der_Q; | New type defining the first time derivative of Frames.Quaternions.Orientation. |
res_ori = orientationConstraint(Q); | Return the constraints between the variables of a quaternion object (shall be zero). |
w1 = angularVelocity1(Q, der_Q); | Return angular velocity resolved in frame 1 from
quaternion object Q and its derivative der_Q. |
w2 = angularVelocity2(Q, der_Q); | Return angular velocity resolved in frame 2 from
quaternion object Q and its derivative der_Q. |
v1 = resolve1(Q,v2); | Transform vector v2 from frame 2 to frame 1. |
v2 = resolve2(Q,v1); | Transform vector v1 from frame 1 to frame 2. |
[v1,w1] = multipleResolve1(Q, [v2,w2]); | Transform several vectors from frame 2 to frame 1. |
[v2,w2] = multipleResolve2(Q, [v1,w1]); | Transform several vectors from frame 1 to frame 2. |
Q = nullRotation() | Return quaternion object R that does not rotate a frame. |
Q_inv = inverseRotation(Q); | Return inverse quaternion object. |
Q_rel = relativeRotation(Q1,Q2); | Return relative quaternion object from two absolute quaternion objects. |
Q2 = absoluteRotation(Q1,Q_rel); | Return absolute quaternion object from another
absolute and a relative quaternion object. |
Q = planarRotation(e, angle); | Return quaternion object of a planar rotation. |
phi = smallRotation(Q); | Return rotation angles phi valid for a small rotation. |
Q = from_T(T); | Return quaternion object Q from transformation matrix T. |
Q = from_T_inv(T_inv); | Return quaternion object Q from inverse transformation matrix T_inv. |
T = to_T(Q); | Return transformation matrix T from quaternion object Q. |
T_inv = to_T_inv(Q); | Return inverse transformation matrix T_inv from quaternion object Q. |
Extends from Modelica.Icons.Library (Icon for library).
Name | Description |
---|---|
Orientation | Orientation type defining rotation from a frame 1 into a frame 2 with quaternions {p1,p2,p3,p0} |
der_Orientation | First time derivative of Quaternions.Orientation |
orientationConstraint | Return residues of orientation constraints (shall be zero) |
angularVelocity1 | Compute angular velocity resolved in frame 1 from quaternion orientation object and its derivative |
angularVelocity2 | Compute angular velocity resolved in frame 2 from quaternions orientation object and its derivative |
resolve1 | Transform vector from frame 2 to frame 1 |
resolve2 | Transform vector from frame 1 to frame 2 |
multipleResolve1 | Transform several vectors from frame 2 to frame 1 |
multipleResolve2 | Transform several vectors from frame 1 to frame 2 |
nullRotation | Return quaternions orientation object that does not rotate a frame |
inverseRotation | Return inverse quaternions orientation object |
relativeRotation | Return relative quaternions orientation object |
absoluteRotation | Return absolute quaternions orientation object from another absolute and a relative quaternions orientation object |
planarRotation | Return quaternions orientation object of a planar rotation |
smallRotation | Return rotation angles valid for a small rotation |
from_T | Return quaternions orientation object Q from transformation matrix T |
from_T_inv | Return quaternions orientation object Q from inverse transformation matrix T_inv |
to_T | Return transformation matrix T from quaternion orientation object Q |
to_T_inv | Return inverse transformation matrix T_inv from quaternion orientation object Q |
type Orientation "Orientation type defining rotation from a frame 1 into a frame 2 with quaternions {p1,p2,p3,p0}" extends Internal.QuaternionBase; encapsulated function equalityConstraint "Return the constraint residues to express that two frames have the same quaternion orientation" import Modelica; import Modelica.Mechanics.MultiBody.Frames.Quaternions; extends Modelica.Icons.Function; input Quaternions.Orientation Q1 "Quaternions orientation object to rotate frame 0 into frame 1"; input Quaternions.Orientation Q2 "Quaternions orientation object to rotate frame 0 into frame 2"; output Real residue[3] "The half of the rotation angles around x-, y-, and z-axis of frame 1 to rotate frame 1 into frame 2 for a small rotation (shall be zero)"; algorithm residue := [Q1[4], Q1[3], -Q1[2], -Q1[1]; -Q1[3], Q1[4], Q1[1], -Q1[2]; Q1[2], -Q1[1], Q1[4], -Q1[3]]*Q2; end equalityConstraint; end Orientation ;
type der_Orientation = Real[4] (each unit="1/s") "First time derivative of Quaternions.Orientation";
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 |
Type | Name | Description |
---|---|---|
Real | residue[1] | Residue constraint (shall be zero) |
function orientationConstraint "Return residues of orientation constraints (shall be zero)" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; output Real residue[1] "Residue constraint (shall be zero)"; algorithm residue := {Q*Q - 1};end orientationConstraint;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 | |
der_Orientation | der_Q | Derivative of Q [1/s] |
Type | Name | Description |
---|---|---|
AngularVelocity | w[3] | Angular velocity resolved in frame 1 [rad/s] |
function angularVelocity1 "Compute angular velocity resolved in frame 1 from quaternion orientation object and its derivative" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; input der_Orientation der_Q "Derivative of Q"; output Modelica.SIunits.AngularVelocity w[3] "Angular velocity resolved in frame 1"; algorithm w := 2*([Q[4], -Q[3], Q[2], -Q[1]; Q[3], Q[4], -Q[1], -Q[2]; -Q[2], Q[1], Q[4], -Q[3]]*der_Q);end angularVelocity1;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 | |
der_Orientation | der_Q | Derivative of Q [1/s] |
Type | Name | Description |
---|---|---|
AngularVelocity | w[3] | Angular velocity of frame 2 with respect to frame 1 resolved in frame 2 [rad/s] |
function angularVelocity2 "Compute angular velocity resolved in frame 2 from quaternions orientation object and its derivative" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; input der_Orientation der_Q "Derivative of Q"; output Modelica.SIunits.AngularVelocity w[3] "Angular velocity of frame 2 with respect to frame 1 resolved in frame 2"; algorithm w := 2*([Q[4], Q[3], -Q[2], -Q[1]; -Q[3], Q[4], Q[1], -Q[2]; Q[2], -Q[1], Q[4], -Q[3]]*der_Q);end angularVelocity2;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 | |
Real | v2[3] | Vector in frame 2 |
Type | Name | Description |
---|---|---|
Real | v1[3] | Vector in frame 1 |
function resolve1 "Transform vector from frame 2 to frame 1" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; input Real v2[3] "Vector in frame 2"; output Real v1[3] "Vector in frame 1"; algorithm v1 := 2*((Q[4]*Q[4] - 0.5)*v2 + (Q[1:3]*v2)*Q[1:3] + Q[4]*cross(Q[1:3], v2));end resolve1;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 | |
Real | v1[3] | Vector in frame 1 |
Type | Name | Description |
---|---|---|
Real | v2[3] | Vector in frame 2 |
function resolve2 "Transform vector from frame 1 to frame 2" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; input Real v1[3] "Vector in frame 1"; output Real v2[3] "Vector in frame 2"; algorithm v2 := 2*((Q[4]*Q[4] - 0.5)*v1 + (Q[1:3]*v1)*Q[1:3] - Q[4]*cross(Q[1:3], v1));end resolve2;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 | |
Real | v2[3, :] | Vectors in frame 2 |
Type | Name | Description |
---|---|---|
Real | v1[3, size(v2, 2)] | Vectors in frame 1 |
function multipleResolve1 "Transform several vectors from frame 2 to frame 1" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; input Real v2[3, :] "Vectors in frame 2"; output Real v1[3, size(v2, 2)] "Vectors in frame 1"; algorithm v1 := ((2*Q[4]*Q[4] - 1)*identity(3) + 2*([Q[1:3]]*transpose([Q[1:3]]) + Q[4]*skew(Q[1:3])))*v2;end multipleResolve1;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 | |
Real | v1[3, :] | Vectors in frame 1 |
Type | Name | Description |
---|---|---|
Real | v2[3, size(v1, 2)] | Vectors in frame 2 |
function multipleResolve2 "Transform several vectors from frame 1 to frame 2" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; input Real v1[3, :] "Vectors in frame 1"; output Real v2[3, size(v1, 2)] "Vectors in frame 2"; algorithm v2 := ((2*Q[4]*Q[4] - 1)*identity(3) + 2*([Q[1:3]]*transpose([Q[1:3]]) - Q[4]*skew(Q[1:3])))*v1;end multipleResolve2;
Type | Name | Description |
---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 |
function nullRotation "Return quaternions orientation object that does not rotate a frame" extends Modelica.Icons.Function; output Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; algorithm Q := {0,0,0,1};end nullRotation;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 |
Type | Name | Description |
---|---|---|
Orientation | Q_inv | Quaternions orientation object to rotate frame 2 into frame 1 |
function inverseRotation "Return inverse quaternions orientation object" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; output Quaternions.Orientation Q_inv "Quaternions orientation object to rotate frame 2 into frame 1"; algorithm Q_inv := {-Q[1],-Q[2],-Q[3],Q[4]};end inverseRotation;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q1 | Quaternions orientation object to rotate frame 0 into frame 1 | |
Orientation | Q2 | Quaternions orientation object to rotate frame 0 into frame 2 |
Type | Name | Description |
---|---|---|
Orientation | Q_rel | Quaternions orientation object to rotate frame 1 into frame 2 |
function relativeRotation "Return relative quaternions orientation object" extends Modelica.Icons.Function; input Quaternions.Orientation Q1 "Quaternions orientation object to rotate frame 0 into frame 1"; input Quaternions.Orientation Q2 "Quaternions orientation object to rotate frame 0 into frame 2"; output Quaternions.Orientation Q_rel "Quaternions orientation object to rotate frame 1 into frame 2"; algorithm Q_rel := [Q1[4], Q1[3], -Q1[2], -Q1[1]; -Q1[3], Q1[4], Q1[1], -Q1[2]; Q1[ 2], -Q1[1], Q1[4], -Q1[3]; Q1[1], Q1[2], Q1[3], Q1[4]]*Q2;end relativeRotation;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q1 | Quaternions orientation object to rotate frame 0 into frame 1 | |
Orientation | Q_rel | Quaternions orientation object to rotate frame 1 into frame 2 |
Type | Name | Description |
---|---|---|
Orientation | Q2 | Quaternions orientation object to rotate frame 0 into frame 2 |
function absoluteRotation "Return absolute quaternions orientation object from another absolute and a relative quaternions orientation object" extends Modelica.Icons.Function; input Quaternions.Orientation Q1 "Quaternions orientation object to rotate frame 0 into frame 1"; input Quaternions.Orientation Q_rel "Quaternions orientation object to rotate frame 1 into frame 2"; output Quaternions.Orientation Q2 "Quaternions orientation object to rotate frame 0 into frame 2"; algorithm Q2 := [Q_rel[4], Q_rel[3], -Q_rel[2], Q_rel[1]; -Q_rel[3], Q_rel[4], Q_rel[1], Q_rel[2]; Q_rel[2], -Q_rel[1], Q_rel[4], Q_rel[3]; -Q_rel[1], -Q_rel[2], -Q_rel[3], Q_rel[4]]*Q1;end absoluteRotation;
Type | Name | Default | Description |
---|---|---|---|
Real | e[3] | Normalized axis of rotation (must have length=1) [1] | |
Angle | angle | Rotation angle to rotate frame 1 into frame 2 along axis e [rad] |
Type | Name | Description |
---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 along axis e |
function planarRotation "Return quaternions orientation object of a planar rotation" import Modelica.Math; extends Modelica.Icons.Function; input Real e[3](each final unit="1") "Normalized axis of rotation (must have length=1)"; input Modelica.SIunits.Angle angle "Rotation angle to rotate frame 1 into frame 2 along axis e"; output Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2 along axis e"; algorithm Q := vector([e*Math.sin(angle/2); Math.cos(angle/2)]);end planarRotation;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 |
Type | Name | Description |
---|---|---|
Angle | phi[3] | The rotation angles around x-, y-, and z-axis of frame 1 to rotate frame 1 into frame 2 for a small relative rotation [rad] |
function smallRotation "Return rotation angles valid for a small rotation" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; output Modelica.SIunits.Angle phi[3] "The rotation angles around x-, y-, and z-axis of frame 1 to rotate frame 1 into frame 2 for a small relative rotation"; algorithm phi := 2*{Q[1],Q[2],Q[3]};end smallRotation;
Type | Name | Default | Description |
---|---|---|---|
Real | T[3, 3] | Transformation matrix to transform vector from frame 1 to frame 2 (v2=T*v1) | |
Orientation | Q_guess | nullRotation() | Guess value for Q (there are 2 solutions; the one close to Q_guess is used |
Type | Name | Description |
---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 (Q and -Q have same transformation matrix) |
function from_T "Return quaternions orientation object Q from transformation matrix T" extends Modelica.Icons.Function; input Real T[3, 3] "Transformation matrix to transform vector from frame 1 to frame 2 (v2=T*v1)"; input Quaternions.Orientation Q_guess=nullRotation() "Guess value for Q (there are 2 solutions; the one close to Q_guess is used"; output Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2 (Q and -Q have same transformation matrix)"; protected Real paux; Real paux4; Real c1; Real c2; Real c3; Real c4; constant Real p4limit=0.1; constant Real c4limit=4*p4limit*p4limit; algorithm /* Note, for quaternions, Q and -Q have the same transformation matrix. Calculation of quaternions from transformation matrix T: It is guaranteed that c1>=0, c2>=0, c3>=0, c4>=0 and that not all of them can be zero at the same time (e.g. if 3 of them are zero, the 4th variable is 1). Since the sqrt(..) has to be performed on one of these variables, it is applied on a variable which is far enough from zero. This guarantees that the sqrt(..) is never taken near zero and therefore the derivative of sqrt(..) can never be infinity. There is an ambiguity for quaternions, since Q and -Q lead to the same transformation matrix. The ambiguity is resolved here by selecting the Q that is closer to the input argument Q_guess. */ c1 := 1 + T[1, 1] - T[2, 2] - T[3, 3]; c2 := 1 + T[2, 2] - T[1, 1] - T[3, 3]; c3 := 1 + T[3, 3] - T[1, 1] - T[2, 2]; c4 := 1 + T[1, 1] + T[2, 2] + T[3, 3]; if c4 > c4limit or (c4 > c1 and c4 > c2 and c4 > c3) then paux := sqrt(c4)/2; paux4 := 4*paux; Q := {(T[2, 3] - T[3, 2])/paux4,(T[3, 1] - T[1, 3])/paux4,(T[1, 2] - T[ 2, 1])/paux4,paux}; elseif c1 > c2 and c1 > c3 and c1 > c4 then paux := sqrt(c1)/2; paux4 := 4*paux; Q := {paux,(T[1, 2] + T[2, 1])/paux4,(T[1, 3] + T[3, 1])/paux4,(T[2, 3] - T[3, 2])/paux4}; elseif c2 > c1 and c2 > c3 and c2 > c4 then paux := sqrt(c2)/2; paux4 := 4*paux; Q := {(T[1, 2] + T[2, 1])/paux4,paux,(T[2, 3] + T[3, 2])/paux4,(T[3, 1] - T[1, 3])/paux4}; else paux := sqrt(c3)/2; paux4 := 4*paux; Q := {(T[1, 3] + T[3, 1])/paux4,(T[2, 3] + T[3, 2])/paux4,paux,(T[1, 2] - T[2, 1])/paux4}; end if; if Q*Q_guess < 0 then Q := -Q; end if; end from_T;
Type | Name | Default | Description |
---|---|---|---|
Real | T_inv[3, 3] | Inverse transformation matrix to transform vector from frame 2 to frame 1 (v1=T_inv*v2) | |
Orientation | Q_guess | nullRotation() | Guess value for output Q (there are 2 solutions; the one closer to Q_guess is used |
Type | Name | Description |
---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 (Q and -Q have same transformation matrix) |
function from_T_inv "Return quaternions orientation object Q from inverse transformation matrix T_inv" extends Modelica.Icons.Function; input Real T_inv[3, 3] "Inverse transformation matrix to transform vector from frame 2 to frame 1 (v1=T_inv*v2)"; input Quaternions.Orientation Q_guess=nullRotation() "Guess value for output Q (there are 2 solutions; the one closer to Q_guess is used"; output Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2 (Q and -Q have same transformation matrix)"; algorithm Q := from_T(transpose(T_inv), Q_guess);end from_T_inv;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 |
Type | Name | Description |
---|---|---|
Real | T[3, 3] | Transformation matrix to transform vector from frame 1 to frame 2 (v2=T*v1) |
function to_T "Return transformation matrix T from quaternion orientation object Q" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; output Real T[3, 3] "Transformation matrix to transform vector from frame 1 to frame 2 (v2=T*v1)"; algorithm /* T := (2*Q[4]*Q[4] - 1)*identity(3) + 2*([Q[1:3]]*transpose([Q[1:3]]) - Q[4]* skew(Q[1:3])); */ T := [2*(Q[1]*Q[1] + Q[4]*Q[4]) - 1, 2*(Q[1]*Q[2] + Q[3]*Q[4]), 2*(Q[1]*Q[ 3] - Q[2]*Q[4]); 2*(Q[2]*Q[1] - Q[3]*Q[4]), 2*(Q[2]*Q[2] + Q[4]*Q[4]) - 1, 2*(Q[2]*Q[3] + Q[1]*Q[4]); 2*(Q[3]*Q[1] + Q[2]*Q[4]), 2*(Q[3]*Q[2] - Q[1]*Q[4]), 2*(Q[3]*Q[3] + Q[4]*Q[4]) - 1];end to_T;
Type | Name | Default | Description |
---|---|---|---|
Orientation | Q | Quaternions orientation object to rotate frame 1 into frame 2 |
Type | Name | Description |
---|---|---|
Real | T_inv[3, 3] | Transformation matrix to transform vector from frame 2 to frame 1 (v1=T*v2) |
function to_T_inv "Return inverse transformation matrix T_inv from quaternion orientation object Q" extends Modelica.Icons.Function; input Quaternions.Orientation Q "Quaternions orientation object to rotate frame 1 into frame 2"; output Real T_inv[3, 3] "Transformation matrix to transform vector from frame 2 to frame 1 (v1=T*v2)"; algorithm /* T_inv := (2*Q[4]*Q[4] - 1)*identity(3) + 2*([Q[1:3]]*transpose([Q[1:3]]) + Q[ 4]*skew(Q[1:3])); */ T_inv := [2*(Q[1]*Q[1] + Q[4]*Q[4]) - 1, 2*(Q[2]*Q[1] - Q[3]*Q[4]), 2*(Q[ 3]*Q[1] + Q[2]*Q[4]); 2*(Q[1]*Q[2] + Q[3]*Q[4]), 2*(Q[2]*Q[2] + Q[4]*Q[ 4]) - 1, 2*(Q[3]*Q[2] - Q[1]*Q[4]); 2*(Q[1]*Q[3] - Q[2]*Q[4]), 2*(Q[2]* Q[3] + Q[1]*Q[4]), 2*(Q[3]*Q[3] + Q[4]*Q[4]) - 1];end to_T_inv;