This component defines only the quadratic turbulent regime of wall friction: dp = k*m_flow*|m_flow|, where "k" depends on density and the roughness of the pipe and is no longer a function of the Reynolds number. This relationship is only valid for large Reynolds numbers.
In UsersGuide the complete friction regime is illustrated. This component describes only the asymptotic behaviour for large Reynolds numbers, i.e., the values at the right ordinate where λ is constant.
Extends from PartialWallFriction (Partial wall friction characteristic (base package of all wall friction characteristics)).
Name | Description |
---|---|
massFlowRate_dp | Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction |
pressureLoss_m_flow | Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction |
massFlowRate_dp_staticHead | Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head |
pressureLoss_m_flow_staticHead | Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head |
Inherited | |
use_mu=true | = true, if mu_a/mu_b are used in function, otherwise value is not used |
use_roughness=true | = true, if roughness is used in function, otherwise value is not used |
use_dp_small=true | = true, if dp_small is used in function, otherwise value is not used |
use_m_flow_small=true | = true, if m_flow_small is used in function, otherwise value is not used |
dp_is_zero=false | = true, if no wall friction is present, i.e., dp = 0 (function massFlowRate_dp() cannot be used) |
Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction).
Type | Name | Default | Description |
---|---|---|---|
Pressure | dp | Pressure loss (dp = port_a.p - port_b.p) [Pa] | |
Density | rho_a | Density at port_a [kg/m3] | |
Density | rho_b | Density at port_b [kg/m3] | |
DynamicViscosity | mu_a | Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s] | |
DynamicViscosity | mu_b | Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s] | |
Length | length | Length of pipe [m] | |
Diameter | diameter | Inner (hydraulic) diameter of pipe [m] | |
Length | roughness | 2.5e-5 | Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m] |
AbsolutePressure | dp_small | 1 | Turbulent flow if |dp| >= dp_small (dummy if use_dp_small = false) [Pa] |
Type | Name | Description |
---|---|---|
MassFlowRate | m_flow | Mass flow rate from port_a to port_b [kg/s] |
redeclare function extends massFlowRate_dp "Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction" import Modelica.Math; protected constant Real pi = Modelica.Constants.pi; Real zeta; Real k_inv; algorithm /* dp = 0.5*zeta*d*v*|v| = 0.5*zeta*d*1/(d*A)^2 * m_flow * |m_flow| = 0.5*zeta/A^2 *1/d * m_flow * |m_flow| = k/d * m_flow * |m_flow| k = 0.5*zeta/A^2 = 0.5*zeta/(pi*(D/2)^2)^2 = 8*zeta/(pi*D^2)^2 */ assert(roughness > 1.e-10, "roughness > 0 required for quadratic turbulent wall friction characteristic"); zeta := (length/diameter)/(2*Math.log10(3.7 /(roughness/diameter)))^2; k_inv := (pi*diameter*diameter)^2/(8*zeta); m_flow := Modelica.Fluid.Utilities.regRoot2(dp, dp_small, rho_a*k_inv, rho_b*k_inv);end massFlowRate_dp;
Extends from (Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction).
Type | Name | Default | Description |
---|---|---|---|
MassFlowRate | m_flow | Mass flow rate from port_a to port_b [kg/s] | |
Density | rho_a | Density at port_a [kg/m3] | |
Density | rho_b | Density at port_b [kg/m3] | |
DynamicViscosity | mu_a | Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s] | |
DynamicViscosity | mu_b | Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s] | |
Length | length | Length of pipe [m] | |
Diameter | diameter | Inner (hydraulic) diameter of pipe [m] | |
Length | roughness | 2.5e-5 | Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m] |
MassFlowRate | m_flow_small | 0.01 | Turbulent flow if |m_flow| >= m_flow_small (dummy if use_m_flow_small = false) [kg/s] |
Type | Name | Description |
---|---|---|
Pressure | dp | Pressure loss (dp = port_a.p - port_b.p) [Pa] |
redeclare function extends pressureLoss_m_flow "Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction" import Modelica.Math; protected constant Real pi = Modelica.Constants.pi; Real zeta; Real k; algorithm /* dp = 0.5*zeta*d*v*|v| = 0.5*zeta*d*1/(d*A)^2 * m_flow * |m_flow| = 0.5*zeta/A^2 *1/d * m_flow * |m_flow| = k/d * m_flow * |m_flow| k = 0.5*zeta/A^2 = 0.5*zeta/(pi*(D/2)^2)^2 = 8*zeta/(pi*D^2)^2 */ assert(roughness > 1.e-10, "roughness > 0 required for quadratic turbulent wall friction characteristic"); zeta := (length/diameter)/(2*Math.log10(3.7 /(roughness/diameter)))^2; k := 8*zeta/(pi*diameter*diameter)^2; dp := Modelica.Fluid.Utilities.regSquare2(m_flow, m_flow_small, k/rho_a, k/rho_b);end pressureLoss_m_flow;
Extends from (Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head).
Type | Name | Default | Description |
---|---|---|---|
Pressure | dp | Pressure loss (dp = port_a.p - port_b.p) [Pa] | |
Density | rho_a | Density at port_a [kg/m3] | |
Density | rho_b | Density at port_b [kg/m3] | |
DynamicViscosity | mu_a | Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s] | |
DynamicViscosity | mu_b | Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s] | |
Length | length | Length of pipe [m] | |
Diameter | diameter | Inner (hydraulic) diameter of pipe [m] | |
Real | g_times_height_ab | Gravity times (Height(port_b) - Height(port_a)) | |
Length | roughness | 2.5e-5 | Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m] |
AbsolutePressure | dp_small | 1 | Turbulent flow if |dp| >= dp_small (dummy if use_dp_small = false) [Pa] |
Type | Name | Description |
---|---|---|
MassFlowRate | m_flow | Mass flow rate from port_a to port_b [kg/s] |
redeclare function extends massFlowRate_dp_staticHead "Return mass flow rate m_flow as function of pressure loss dp, i.e., m_flow = f(dp), due to wall friction and static head" import Modelica.Math; protected constant Real pi = Modelica.Constants.pi; Real zeta = (length/diameter)/(2*Math.log10(3.7 /(roughness/diameter)))^2; Real k_inv = (pi*diameter*diameter)^2/(8*zeta); SI.Pressure dp_grav_a = g_times_height_ab*rho_a "Static head if mass flows in design direction (a to b)"; SI.Pressure dp_grav_b = g_times_height_ab*rho_b "Static head if mass flows against design direction (b to a)"; Real k1 = rho_a*k_inv "Factor in m_flow = sqrt(k1*(dp-dp_grav_a))"; Real k2 = rho_b*k_inv "Factor in m_flow = -sqrt(k2*|dp-dp_grav_b|)"; Real dp_a=max(dp_grav_a,dp_grav_b)+dp_small "Upper end of regularization domain of the m_flow(dp) relation"; Real dp_b=min(dp_grav_a,dp_grav_b)-dp_small "Lower end of regularization domain of the m_flow(dp) relation"; SI.MassFlowRate m_flow_a "Value at upper end of regularization domain"; SI.MassFlowRate m_flow_b "Value at lower end of regularization domain"; SI.MassFlowRate dm_flow_ddp_fric_a "Derivative at upper end of regularization domain"; SI.MassFlowRate dm_flow_ddp_fric_b "Derivative at lower end of regularization domain"; // Properly define zero mass flow conditions SI.MassFlowRate m_flow_zero = 0; SI.Pressure dp_zero = (dp_grav_a + dp_grav_b)/2; Real dm_flow_ddp_fric_zero; algorithm /* dp = 0.5*zeta*d*v*|v| = 0.5*zeta*d*1/(d*A)^2 * m_flow * |m_flow| = 0.5*zeta/A^2 *1/d * m_flow * |m_flow| = k/d * m_flow * |m_flow| k = 0.5*zeta/A^2 = 0.5*zeta/(pi*(D/2)^2)^2 = 8*zeta/(pi*D^2)^2 */ assert(roughness > 1.e-10, "roughness > 0 required for quadratic turbulent wall friction characteristic"); if dp>=dp_a then // Positive flow outside regularization m_flow := sqrt(k1*(dp-dp_grav_a)); elseif dp<=dp_b then // Negative flow outside regularization m_flow := -sqrt(k2*abs(dp-dp_grav_b)); else m_flow_a := sqrt(k1*(dp_a - dp_grav_a)); m_flow_b := -sqrt(k2*abs(dp_b - dp_grav_b)); dm_flow_ddp_fric_a := k1/(2*sqrt(k1*(dp_a - dp_grav_a))); dm_flow_ddp_fric_b := k2/(2*sqrt(k2*abs(dp_b - dp_grav_b))); /* dm_flow_ddp_fric_a := if abs(dp_a - dp_grav_a)>0 then k1/(2*sqrt(k1*(dp_a - dp_grav_a))) else Modelica.Constants.inf); dm_flow_ddp_fric_b := if abs(dp_b - dp_grav_b)>0 then k2/(2*sqrt(k2*abs(dp_b - dp_grav_b))) else Modelica.Constants.inf; */ // Include a properly defined zero mass flow point // Obtain a suitable slope from the linear section slope c (value of m_flow is overwritten later) (m_flow, dm_flow_ddp_fric_zero) := Utilities.regFun3(dp_zero, dp_b, dp_a, m_flow_b, m_flow_a, dm_flow_ddp_fric_b, dm_flow_ddp_fric_a); // Do regularization if dp>dp_zero then m_flow := Utilities.regFun3(dp, dp_zero, dp_a, m_flow_zero, m_flow_a, dm_flow_ddp_fric_zero, dm_flow_ddp_fric_a); else m_flow := Utilities.regFun3(dp, dp_b, dp_zero, m_flow_b, m_flow_zero, dm_flow_ddp_fric_b, dm_flow_ddp_fric_zero); end if; end if;end massFlowRate_dp_staticHead;
Extends from (Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head).
Type | Name | Default | Description |
---|---|---|---|
MassFlowRate | m_flow | Mass flow rate from port_a to port_b [kg/s] | |
Density | rho_a | Density at port_a [kg/m3] | |
Density | rho_b | Density at port_b [kg/m3] | |
DynamicViscosity | mu_a | Dynamic viscosity at port_a (dummy if use_mu = false) [Pa.s] | |
DynamicViscosity | mu_b | Dynamic viscosity at port_b (dummy if use_mu = false) [Pa.s] | |
Length | length | Length of pipe [m] | |
Diameter | diameter | Inner (hydraulic) diameter of pipe [m] | |
Real | g_times_height_ab | Gravity times (Height(port_b) - Height(port_a)) | |
Length | roughness | 2.5e-5 | Absolute roughness of pipe, with a default for a smooth steel pipe (dummy if use_roughness = false) [m] |
MassFlowRate | m_flow_small | 0.01 | Turbulent flow if |m_flow| >= m_flow_small (dummy if use_m_flow_small = false) [kg/s] |
Type | Name | Description |
---|---|---|
Pressure | dp | Pressure loss (dp = port_a.p - port_b.p) [Pa] |
redeclare function extends pressureLoss_m_flow_staticHead "Return pressure loss dp as function of mass flow rate m_flow, i.e., dp = f(m_flow), due to wall friction and static head" import Modelica.Math; protected constant Real pi = Modelica.Constants.pi; Real zeta = (length/diameter)/(2*Math.log10(3.7 /(roughness/diameter)))^2; Real k = 8*zeta/(pi*diameter*diameter)^2; SI.Pressure dp_grav_a = g_times_height_ab*rho_a "Static head if mass flows in design direction (a to b)"; SI.Pressure dp_grav_b = g_times_height_ab*rho_b "Static head if mass flows against design direction (b to a)"; Real k1 = k/rho_a "If m_flow >= 0 then dp = k1*m_flow^2 + dp_grav_a"; Real k2 = k/rho_b "If m_flow < 0 then dp = -k2*m_flow^2 + dp_grav_b"; Real m_flow_a=if dp_grav_a >= dp_grav_b then m_flow_small else m_flow_small + sqrt((dp_grav_b - dp_grav_a)/k1) "Upper end of regularization domain of the dp(m_flow) relation"; Real m_flow_b=if dp_grav_a >= dp_grav_b then -m_flow_small else -m_flow_small - sqrt((dp_grav_b - dp_grav_a)/k2) "Lower end of regularization domain of the dp(m_flow) relation"; SI.Pressure dp_a "Value at upper end of regularization domain"; SI.Pressure dp_b "Value at lower end of regularization domain"; Real ddp_dm_flow_a "Derivative of pressure drop with mass flow rate at m_flow_a"; Real ddp_dm_flow_b "Derivative of pressure drop with mass flow rate at m_flow_b"; // Properly define zero mass flow conditions SI.MassFlowRate m_flow_zero = 0; SI.Pressure dp_zero = (dp_grav_a + dp_grav_b)/2; Real ddp_dm_flow_zero; algorithm /* dp = 0.5*zeta*d*v*|v| = 0.5*zeta*d*1/(d*A)^2 * m_flow * |m_flow| = 0.5*zeta/A^2 *1/d * m_flow * |m_flow| = k/d * m_flow * |m_flow| k = 0.5*zeta/A^2 = 0.5*zeta/(pi*(D/2)^2)^2 = 8*zeta/(pi*D^2)^2 */ assert(roughness > 1.e-10, "roughness > 0 required for quadratic turbulent wall friction characteristic"); if m_flow>=m_flow_a then // Positive flow outside regularization dp := (k1*m_flow^2 + dp_grav_a); elseif m_flow<=m_flow_b then // Negative flow outside regularization dp := (-k2*m_flow^2 + dp_grav_b); else // Regularization parameters dp_a := k1*m_flow_a^2 + dp_grav_a; ddp_dm_flow_a := 2*k1*m_flow_a; dp_b := -k2*m_flow_b^2 + dp_grav_b; ddp_dm_flow_b := -2*k2*m_flow_b; // Include a properly defined zero mass flow point // Obtain a suitable slope from the linear section slope c (value of dp is overwritten later) (dp, ddp_dm_flow_zero) := Utilities.regFun3(m_flow_zero, m_flow_b, m_flow_a, dp_b, dp_a, ddp_dm_flow_b, ddp_dm_flow_a); // Do regularization if m_flow>m_flow_zero then dp := Utilities.regFun3(m_flow, m_flow_zero, m_flow_a, dp_zero, dp_a, ddp_dm_flow_zero, ddp_dm_flow_a); else dp := Utilities.regFun3(m_flow, m_flow_b, m_flow_zero, dp_b, dp_zero, ddp_dm_flow_b, ddp_dm_flow_zero); end if; end if;end pressureLoss_m_flow_staticHead;