Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice

Package with VAV models for a small office building

Information

This package contains variable air volume flow models for a office building.

Note

The models Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter and Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter appear to be quite similar to Buildings.Examples.VAVReheat.ASHRAE2006 and Buildings.Examples.VAVReheat.Guideline36, respectively, because they all have the same HVAC system, control sequences, and all have five thermal zones. However, the models in Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice are from the DOE Commercial Reference Building, Small Office, new construction, ASHRAE 90.1-2004, Version 1.3_5.0, whereas the models in Buildings.Examples.VAVReheat are from the DOE Commercial Building Benchmark, Medium Office, new construction, ASHRAE 90.1-2004, version 1.2_4.0. Therefore, the dimensions of the thermal zones in Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice are considerably smaller than in Buildings.Examples.VAVReheat. As the sizing is scaled with the volumes of the thermal zones, the model structure is the same, but the design capacities are different, as is the energy consumption.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Spring ASHRAE2006Spring Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Summer ASHRAE2006Summer Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter ASHRAE2006Winter Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Spring Guideline36Spring Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Summer Guideline36Summer Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter Guideline36Winter Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSpring IdealHeatingCoolingSpring Building with constant fresh air and ideal heating/cooling that exactly meets set point
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSummer IdealHeatingCoolingSummer Building with constant fresh air and ideal heating/cooling that exactly meets set point
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter IdealHeatingCoolingWinter Building with constant fresh air and ideal heating/cooling that exactly meets set point
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Unconditioned Unconditioned Open loop model of one floor
Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.BaseClasses BaseClasses Package with base classes

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Spring Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Spring

Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Spring

Information

This is the same model as Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter but configured for simulation of a few days in spring.

Extends from Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter (Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006).

Parameters

TypeNameDefaultDescription
replaceable package MediumAAirMedium model for air
replaceable package MediumWWaterMedium model for water
MassFlowRatemCor_flow_nominalACHCor*VRooCor*convDesign mass flow rate core [kg/s]
MassFlowRatemSou_flow_nominalACHSou*VRooSou*convDesign mass flow rate south [kg/s]
MassFlowRatemEas_flow_nominalACHEas*VRooEas*convDesign mass flow rate east [kg/s]
MassFlowRatemNor_flow_nominalACHNor*VRooNor*convDesign mass flow rate north [kg/s]
MassFlowRatemWes_flow_nominalACHWes*VRooWes*convDesign mass flow rate west [kg/s]
TemperatureTHeaWatInl_nominal45 + 273.15Reheat coil nominal inlet water temperature [K]
RealACHCor4Design air change per hour core [1/h]
RealACHSou4Design air change per hour south [1/h]
RealACHEas6Design air change per hour east [1/h]
RealACHNor4Design air change per hour north [1/h]
RealACHWes6Design air change per hour west [1/h]

Modelica definition

model ASHRAE2006Spring "Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006" extends Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter; end ASHRAE2006Spring;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Summer Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Summer

Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Summer

Information

This is the same model as Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter but configured for simulation of a few days in spring.

Extends from Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter (Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006).

Parameters

TypeNameDefaultDescription
replaceable package MediumAAirMedium model for air
replaceable package MediumWWaterMedium model for water
MassFlowRatemCor_flow_nominalACHCor*VRooCor*convDesign mass flow rate core [kg/s]
MassFlowRatemSou_flow_nominalACHSou*VRooSou*convDesign mass flow rate south [kg/s]
MassFlowRatemEas_flow_nominalACHEas*VRooEas*convDesign mass flow rate east [kg/s]
MassFlowRatemNor_flow_nominalACHNor*VRooNor*convDesign mass flow rate north [kg/s]
MassFlowRatemWes_flow_nominalACHWes*VRooWes*convDesign mass flow rate west [kg/s]
TemperatureTHeaWatInl_nominal45 + 273.15Reheat coil nominal inlet water temperature [K]
RealACHCor4Design air change per hour core [1/h]
RealACHSou4Design air change per hour south [1/h]
RealACHEas6Design air change per hour east [1/h]
RealACHNor4Design air change per hour north [1/h]
RealACHWes6Design air change per hour west [1/h]

Modelica definition

model ASHRAE2006Summer "Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006" extends Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter; end ASHRAE2006Summer;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter

Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter

Information

This model consist of an HVAC system, a building envelope model and a model for air flow through building leakage and through open doors.

The HVAC system is a variable air volume (VAV) flow system with economizer and a heating and cooling coil in the air handler unit. There is also a reheat coil and an air damper in each of the five zone inlet branches. The figure below shows the schematic diagram of the HVAC system

image

See the model Buildings.Examples.VAVReheat.BaseClasses.PartialHVAC for a description of the HVAC system, and see the model Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.BaseClasses.Floor for a description of the building envelope.

The control is an implementation of the control sequence VAV 2A2-21232 of the Sequences of Operation for Common HVAC Systems (ASHRAE, 2006). In this control sequence, the supply fan speed is regulated based on the duct static pressure. The return fan controller tracks the supply fan air flow rate. The duct static pressure is adjusted so that at least one VAV damper is 90% open. The economizer dampers are modulated to track the setpoint for the mixed air dry bulb temperature. Priority is given to maintain a minimum outside air volume flow rate. In each zone, the VAV damper is adjusted to meet the room temperature setpoint for cooling, or fully opened during heating. The room temperature setpoint for heating is tracked by varying the water flow rate through the reheat coil. There is also a finite state machine that transitions the mode of operation of the HVAC system between the modes occupied, unoccupied off, unoccupied night set back, unoccupied warm-up and unoccupied pre-cool. In the VAV model, all air flows are computed based on the duct static pressure distribution and the performance curves of the fans. Local loop control is implemented using proportional and proportional-integral controllers, while the supervisory control is implemented using a finite state machine.

A similar model but with a different control sequence can be found in Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter.

References

ASHRAE. Sequences of Operation for Common HVAC Systems. ASHRAE, Atlanta, GA, 2006.

Extends from Modelica.Icons.Example (Icon for runnable examples), Buildings.Examples.VAVReheat.BaseClasses.HVACBuilding (Partial model that contains the HVAC and building model).

Parameters

TypeNameDefaultDescription
replaceable package MediumAAirMedium model for air
replaceable package MediumWWaterMedium model for water
MassFlowRatemCor_flow_nominalACHCor*VRooCor*convDesign mass flow rate core [kg/s]
MassFlowRatemSou_flow_nominalACHSou*VRooSou*convDesign mass flow rate south [kg/s]
MassFlowRatemEas_flow_nominalACHEas*VRooEas*convDesign mass flow rate east [kg/s]
MassFlowRatemNor_flow_nominalACHNor*VRooNor*convDesign mass flow rate north [kg/s]
MassFlowRatemWes_flow_nominalACHWes*VRooWes*convDesign mass flow rate west [kg/s]
TemperatureTHeaWatInl_nominal45 + 273.15Reheat coil nominal inlet water temperature [K]
RealACHCor4Design air change per hour core [1/h]
RealACHSou4Design air change per hour south [1/h]
RealACHEas6Design air change per hour east [1/h]
RealACHNor4Design air change per hour north [1/h]
RealACHWes6Design air change per hour west [1/h]

Modelica definition

model ASHRAE2006Winter "Variable air volume flow system with terminal reheat and five thermal zones using a control sequence published by ASHRAE in 2006" extends Modelica.Icons.Example; extends Buildings.Examples.VAVReheat.BaseClasses.HVACBuilding( mCor_flow_nominal=ACHCor*VRooCor*conv, mSou_flow_nominal=ACHSou*VRooSou*conv, mEas_flow_nominal=ACHEas*VRooEas*conv, mNor_flow_nominal=ACHNor*VRooNor*conv, mWes_flow_nominal=ACHWes*VRooWes*conv, redeclare Buildings.Examples.VAVReheat.BaseClasses.ASHRAE2006 hvac, redeclare Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.BaseClasses.Floor flo); parameter Real ACHCor(final unit="1/h")=4 "Design air change per hour core"; parameter Real ACHSou(final unit="1/h")=4 "Design air change per hour south"; parameter Real ACHEas(final unit="1/h")=6 "Design air change per hour east"; parameter Real ACHNor(final unit="1/h")=4 "Design air change per hour north"; parameter Real ACHWes(final unit="1/h")=6 "Design air change per hour west"; end ASHRAE2006Winter;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Spring Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Spring

Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Spring

Information

This is the same model as Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter but configured for simulation of a few days in spring.

Extends from Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter (Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller).

Parameters

TypeNameDefaultDescription
replaceable package MediumAAirMedium model for air
replaceable package MediumWWaterMedium model for water
MassFlowRatemCor_flow_nominalACHCor*VRooCor*convDesign mass flow rate core [kg/s]
MassFlowRatemSou_flow_nominalACHSou*VRooSou*convDesign mass flow rate south [kg/s]
MassFlowRatemEas_flow_nominalACHEas*VRooEas*convDesign mass flow rate east [kg/s]
MassFlowRatemNor_flow_nominalACHNor*VRooNor*convDesign mass flow rate north [kg/s]
MassFlowRatemWes_flow_nominalACHWes*VRooWes*convDesign mass flow rate west [kg/s]
TemperatureTHeaWatInl_nominal45 + 273.15Reheat coil nominal inlet water temperature [K]
RealACHCor4Design air change per hour core [1/h]
RealACHSou4Design air change per hour south [1/h]
RealACHEas6Design air change per hour east [1/h]
RealACHNor4Design air change per hour north [1/h]
RealACHWes6Design air change per hour west [1/h]

Modelica definition

model Guideline36Spring "Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller" extends Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter; end Guideline36Spring;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Summer Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Summer

Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Summer

Information

This is the same model as Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter but configured for simulation of a few days in summer.

Extends from Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter (Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller).

Parameters

TypeNameDefaultDescription
replaceable package MediumAAirMedium model for air
replaceable package MediumWWaterMedium model for water
MassFlowRatemCor_flow_nominalACHCor*VRooCor*convDesign mass flow rate core [kg/s]
MassFlowRatemSou_flow_nominalACHSou*VRooSou*convDesign mass flow rate south [kg/s]
MassFlowRatemEas_flow_nominalACHEas*VRooEas*convDesign mass flow rate east [kg/s]
MassFlowRatemNor_flow_nominalACHNor*VRooNor*convDesign mass flow rate north [kg/s]
MassFlowRatemWes_flow_nominalACHWes*VRooWes*convDesign mass flow rate west [kg/s]
TemperatureTHeaWatInl_nominal45 + 273.15Reheat coil nominal inlet water temperature [K]
RealACHCor4Design air change per hour core [1/h]
RealACHSou4Design air change per hour south [1/h]
RealACHEas6Design air change per hour east [1/h]
RealACHNor4Design air change per hour north [1/h]
RealACHWes6Design air change per hour west [1/h]

Modelica definition

model Guideline36Summer "Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller" extends Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter; end Guideline36Summer;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter

Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Guideline36Winter

Information

This model consist of an HVAC system, a building envelope model and a model for air flow through building leakage and through open doors.

The HVAC system is a variable air volume (VAV) flow system with economizer and a heating and cooling coil in the air handler unit. There is also a reheat coil and an air damper in each of the five zone inlet branches.

See the model Buildings.Examples.VAVReheat.BaseClasses.PartialHVAC for a description of the HVAC system, and see the model Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.BaseClasses.Floor for a description of the building envelope.

The control is based on ASHRAE Guideline 36, and implemented using the sequences from the library Buildings.Controls.OBC.ASHRAE.G36 for multi-zone VAV systems with economizer. The schematic diagram of the HVAC and control sequence is shown in the figure below.

image

A similar model but with a different control sequence can be found in Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.ASHRAE2006Winter.. Note that this model, because of the frequent time sampling, has longer computing time than Buildings.Examples.VAVReheat.ASHRAE2006. The reason is that the time integrator cannot make large steps because it needs to set a time step each time the control samples its input.

Extends from Modelica.Icons.Example (Icon for runnable examples), Buildings.Examples.VAVReheat.BaseClasses.HVACBuilding (Partial model that contains the HVAC and building model).

Parameters

TypeNameDefaultDescription
replaceable package MediumAAirMedium model for air
replaceable package MediumWWaterMedium model for water
MassFlowRatemCor_flow_nominalACHCor*VRooCor*convDesign mass flow rate core [kg/s]
MassFlowRatemSou_flow_nominalACHSou*VRooSou*convDesign mass flow rate south [kg/s]
MassFlowRatemEas_flow_nominalACHEas*VRooEas*convDesign mass flow rate east [kg/s]
MassFlowRatemNor_flow_nominalACHNor*VRooNor*convDesign mass flow rate north [kg/s]
MassFlowRatemWes_flow_nominalACHWes*VRooWes*convDesign mass flow rate west [kg/s]
TemperatureTHeaWatInl_nominal45 + 273.15Reheat coil nominal inlet water temperature [K]
RealACHCor4Design air change per hour core [1/h]
RealACHSou4Design air change per hour south [1/h]
RealACHEas6Design air change per hour east [1/h]
RealACHNor4Design air change per hour north [1/h]
RealACHWes6Design air change per hour west [1/h]

Modelica definition

model Guideline36Winter "Variable air volume flow system with terminal reheat and five thermal zones controlled using an ASHRAE G36 controller" extends Modelica.Icons.Example; extends Buildings.Examples.VAVReheat.BaseClasses.HVACBuilding( mCor_flow_nominal=ACHCor*VRooCor*conv, mSou_flow_nominal=ACHSou*VRooSou*conv, mEas_flow_nominal=ACHEas*VRooEas*conv, mNor_flow_nominal=ACHNor*VRooNor*conv, mWes_flow_nominal=ACHWes*VRooWes*conv, redeclare Buildings.Examples.VAVReheat.BaseClasses.Guideline36 hvac, redeclare Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.BaseClasses.Floor flo); parameter Real ACHCor(final unit="1/h")=4 "Design air change per hour core"; parameter Real ACHSou(final unit="1/h")=4 "Design air change per hour south"; parameter Real ACHEas(final unit="1/h")=6 "Design air change per hour east"; parameter Real ACHNor(final unit="1/h")=4 "Design air change per hour north"; parameter Real ACHWes(final unit="1/h")=6 "Design air change per hour west"; end Guideline36Winter;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSpring Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSpring

Building with constant fresh air and ideal heating/cooling that exactly meets set point

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSpring

Information

This is the same model as Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter but configured for simulation of a few days in summer.

Extends from Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter (Building with constant fresh air and ideal heating/cooling that exactly meets set point).

Parameters

TypeNameDefaultDescription
replaceable package MediumAirMedium for air
StringweaNameModelica.Utilities.Files.loa...Name of the weather file

Connectors

TypeNameDescription
BusweaBusWeather data bus

Modelica definition

model IdealHeatingCoolingSpring "Building with constant fresh air and ideal heating/cooling that exactly meets set point" extends Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter; end IdealHeatingCoolingSpring;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSummer Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSummer

Building with constant fresh air and ideal heating/cooling that exactly meets set point

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingSummer

Information

This is the same model as Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter but configured for simulation of a few days in summer.

Extends from Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter (Building with constant fresh air and ideal heating/cooling that exactly meets set point).

Parameters

TypeNameDefaultDescription
replaceable package MediumAirMedium for air
StringweaNameModelica.Utilities.Files.loa...Name of the weather file

Connectors

TypeNameDescription
BusweaBusWeather data bus

Modelica definition

model IdealHeatingCoolingSummer "Building with constant fresh air and ideal heating/cooling that exactly meets set point" extends Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter; end IdealHeatingCoolingSummer;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter

Building with constant fresh air and ideal heating/cooling that exactly meets set point

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.IdealHeatingCoolingWinter

Information

Test case of the small office DOE reference building without an HVAC system but an ideal heating/cooling device that exactly meets the load.

Extends from Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Unconditioned (Open loop model of one floor).

Parameters

TypeNameDefaultDescription
replaceable package MediumAirMedium for air
StringweaNameModelica.Utilities.Files.loa...Name of the weather file

Connectors

TypeNameDescription
BusweaBusWeather data bus

Modelica definition

model IdealHeatingCoolingWinter "Building with constant fresh air and ideal heating/cooling that exactly meets set point" extends Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Unconditioned; Controls.OBC.CDL.Reals.Sources.Constant THeaSet[5]( each k( final unit="K", displayUnit="degC")=293.15) "Set point temperature for heating"; Controls.OBC.CDL.Reals.Sources.Constant THeaCoo[5]( each k( final unit="K", displayUnit="degC")=299.15) "Set point temperature for cooling"; BaseClasses.IdealHeaterCooler[5] hea( Q_flow_nominal=70*{flo.AFloSou,flo.AFloEas,flo.AFloNor,flo.AFloWes,flo.AFloCor}) "Ideal heater"; BaseClasses.IdealHeaterCooler[5] coo( Q_flow_nominal=-50*{flo.AFloSou,flo.AFloEas,flo.AFloNor,flo.AFloWes,flo.AFloCor}) "Ideal cooling device for sensible cooling"; Controls.OBC.CDL.Reals.MultiSum QHea_flow( nin=5) "Total heat flow rate"; Modelica.Blocks.Continuous.Integrator EHea "Heating energy"; Controls.OBC.CDL.Reals.MultiSum QCoo_flow( nin=5) "Total heat flow rate"; Modelica.Blocks.Continuous.Integrator ECoo "Cooling energy"; equation connect(flo.TRooAir,hea.TMea); connect(THeaSet.y,hea.TSet); connect(coo[1].heaPor,flo.heaPorSou); connect(coo[2].heaPor,flo.heaPorEas); connect(coo[3].heaPor,flo.heaPorNor); connect(coo[4].heaPor,flo.heaPorWes); connect(coo[5].heaPor,flo.heaPorCor); connect(hea[1].heaPor,flo.heaPorSou); connect(hea[2].heaPor,flo.heaPorEas); connect(hea[3].heaPor,flo.heaPorNor); connect(hea[4].heaPor,flo.heaPorWes); connect(hea[5].heaPor,flo.heaPorCor); connect(THeaCoo.y,coo.TSet); connect(flo.TRooAir,coo.TMea); connect(QHea_flow.y,EHea.u); connect(hea.Q_flow,QHea_flow.u); connect(QCoo_flow.y,ECoo.u); connect(QCoo_flow.u[1:5],coo.Q_flow); end IdealHeatingCoolingWinter;

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Unconditioned Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Unconditioned

Open loop model of one floor

Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.Unconditioned

Information

Test case of the small office DOE reference building without an HVAC system. Each thermal zone has a constant air flow rate of unconditioned outside air.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
replaceable package MediumBuildings.Media.AirMedium for air
StringweaNameModelica.Utilities.Files.loa...Name of the weather file

Connectors

TypeNameDescription
replaceable package MediumMedium for air
BusweaBusWeather data bus

Modelica definition

model Unconditioned "Open loop model of one floor" extends Modelica.Icons.Example; replaceable package Medium=Buildings.Media.Air "Medium for air"; parameter String weaName=Modelica.Utilities.Files.loadResource( "modelica://Buildings/Resources/weatherdata/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.mos") "Name of the weather file"; final parameter Modelica.Units.SI.MassFlowRate mOut_flow[4]=0.3/3600*{flo.VRooSou, flo.VRooEas,flo.VRooNor,flo.VRooWes}*1.2 "Outside air infiltration for each exterior room"; BoundaryConditions.WeatherData.ReaderTMY3 weaDat( filNam=weaName, computeWetBulbTemperature=false) "Weather data reader"; BoundaryConditions.WeatherData.Bus weaBus "Weather data bus"; Buildings.ThermalZones.EnergyPlus_9_6_0.Examples.SmallOffice.BaseClasses.Floor flo( redeclare package Medium=Medium, nor( T_start=275.15), wes( T_start=275.15), eas( T_start=275.15), sou( T_start=275.15), cor( T_start=275.15)) "One floor of the office building"; // Above, the volume V is for Spawn obtained in the initial equation section. // Hence it is not known when the model is compiled. This leads to a // warning in Dymola and an error in Optimica (Modelon#2020031339000191) // if used in an expression for the nominal attribute of lea*(res(m_flow(nominal=....))). // Assigning the nominal attribute to a constant avoids this warning and error. Fluid.Sources.MassFlowSource_WeatherData bou[4]( redeclare each package Medium=Medium, m_flow=mOut_flow, each nPorts=1) "Infiltration, used to avoid that the absolute humidity is continuously increasing"; Fluid.Sources.Outside out( redeclare package Medium=Medium, nPorts=1) "Outside condition"; Fluid.FixedResistances.PressureDrop res( redeclare package Medium=Medium, m_flow_nominal=sum(mOut_flow), dp_nominal=10, linearized=true) "Small flow resistance for inlet"; Fluid.FixedResistances.PressureDrop res1[4]( redeclare each package Medium=Medium, each m_flow_nominal=sum(mOut_flow), each dp_nominal=10, each linearized=true) "Small flow resistance for inlet"; equation connect(weaDat.weaBus,weaBus); connect(weaBus,flo.weaBus); connect(out.ports[1],res.port_a); connect(res.port_b,flo.portsCor[1]); connect(weaBus,out.weaBus); connect(bou[:].ports[1],res1[:].port_a); connect(weaBus,bou[1].weaBus); connect(weaBus,bou[2].weaBus); connect(weaBus,bou[3].weaBus); connect(weaBus,bou[4].weaBus); connect(res1[1].port_b,flo.portsSou[1]); connect(res1[2].port_b,flo.portsEas[1]); connect(res1[3].port_b,flo.portsNor[1]); connect(res1[4].port_b,flo.portsWes[1]); end Unconditioned;