Buildings.Electrical.PhaseSystems.ThreePhase_dq

AC system, symmetrically loaded three-phase

Information

This package declares the functions that are used to implement the AC three-phase balanced models using the DQ representation.

Extends from PartialPhaseSystem (Base package of all phase systems).

Package Content

Name Description
Buildings.Electrical.PhaseSystems.ThreePhase_dq.j j Return vector rotated by 90 degrees
Buildings.Electrical.PhaseSystems.ThreePhase_dq.thetaRel thetaRel Return absolute angle of rotating system as offset to thetaRef
Buildings.Electrical.PhaseSystems.ThreePhase_dq.thetaRef thetaRef Return absolute angle of rotating reference system
Buildings.Electrical.PhaseSystems.ThreePhase_dq.phase phase Return phase
Buildings.Electrical.PhaseSystems.ThreePhase_dq.phaseVoltages phaseVoltages Return phase to neutral voltages
Buildings.Electrical.PhaseSystems.ThreePhase_dq.phaseCurrents phaseCurrents Return phase currents
Buildings.Electrical.PhaseSystems.ThreePhase_dq.phasePowers phasePowers Return phase powers
Buildings.Electrical.PhaseSystems.ThreePhase_dq.phasePowers_vi phasePowers_vi Return phase powers
Buildings.Electrical.PhaseSystems.ThreePhase_dq.systemVoltage systemVoltage Return system voltage as function of phase voltages
Buildings.Electrical.PhaseSystems.ThreePhase_dq.systemCurrent systemCurrent Return system current as function of phase currents
Buildings.Electrical.PhaseSystems.ThreePhase_dq.activePower activePower Return total power as function of phase powers
Inherited
phaseSystemName="ThreePhase_dq" Name of the phase system represented by the package
n=2 Number of independent voltage and current components
m=1 Number of reference angles
Buildings.Electrical.PhaseSystems.PartialPhaseSystem.Current Current Current for connector
Buildings.Electrical.PhaseSystems.PartialPhaseSystem.Voltage Voltage Voltage for connector
Buildings.Electrical.PhaseSystems.PartialPhaseSystem.ReferenceAngle ReferenceAngle Reference angle for connector
Buildings.Electrical.PhaseSystems.PartialPhaseSystem.jj jj Vectorized version of j
Buildings.Electrical.PhaseSystems.PartialPhaseSystem.rotate rotate Rotate a vector of an angle theta (anti-counterclock)
Buildings.Electrical.PhaseSystems.PartialPhaseSystem.product product Multiply two vectors
Buildings.Electrical.PhaseSystems.PartialPhaseSystem.divide divide Divide two vectors

Buildings.Electrical.PhaseSystems.ThreePhase_dq.j Buildings.Electrical.PhaseSystems.ThreePhase_dq.j

Return vector rotated by 90 degrees

Information

Extends from (Return vector rotated by 90 degrees).

Inputs

TypeNameDefaultDescription
Realx[n]  

Outputs

TypeNameDescription
Realy[n] 

Modelica definition

redeclare function extends j "Return vector rotated by 90 degrees" algorithm y := {-x[2], x[1]}; end j;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.thetaRel Buildings.Electrical.PhaseSystems.ThreePhase_dq.thetaRel

Return absolute angle of rotating system as offset to thetaRef

Information

Extends from (Return absolute angle of rotating system as offset to thetaRef).

Inputs

TypeNameDefaultDescription
Angletheta[m] [rad]

Outputs

TypeNameDescription
AnglethetaRel[rad]

Modelica definition

redeclare function extends thetaRel "Return absolute angle of rotating system as offset to thetaRef" algorithm thetaRel := 0; end thetaRel;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.thetaRef Buildings.Electrical.PhaseSystems.ThreePhase_dq.thetaRef

Return absolute angle of rotating reference system

Information

Extends from (Return absolute angle of rotating reference system).

Inputs

TypeNameDefaultDescription
Angletheta[m] [rad]

Outputs

TypeNameDescription
AnglethetaRef[rad]

Modelica definition

redeclare function extends thetaRef "Return absolute angle of rotating reference system" algorithm thetaRef := theta[1]; end thetaRef;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.phase Buildings.Electrical.PhaseSystems.ThreePhase_dq.phase

Return phase

Information

Extends from (Return phase).

Inputs

TypeNameDefaultDescription
Realx[n]  

Outputs

TypeNameDescription
Anglephase[rad]

Modelica definition

redeclare function extends phase "Return phase" algorithm phase := atan2(x[2], x[1]); end phase;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.phaseVoltages Buildings.Electrical.PhaseSystems.ThreePhase_dq.phaseVoltages

Return phase to neutral voltages

Information

Extends from (Return phase to neutral voltages).

Inputs

TypeNameDefaultDescription
VoltageV system voltage [V]
Anglephi0phase angle [rad]

Outputs

TypeNameDescription
Voltagev[n]phase to neutral voltages [V]

Modelica definition

redeclare function extends phaseVoltages "Return phase to neutral voltages" algorithm v := {V*cos(phi), V*sin(phi)}/sqrt(3); end phaseVoltages;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.phaseCurrents Buildings.Electrical.PhaseSystems.ThreePhase_dq.phaseCurrents

Return phase currents

Information

Extends from (Return phase currents).

Inputs

TypeNameDefaultDescription
CurrentI system current [A]
Anglephi0phase angle [rad]

Outputs

TypeNameDescription
Currenti[n]phase currents [A]

Modelica definition

redeclare function extends phaseCurrents "Return phase currents" algorithm i := {I*cos(phi), I*sin(phi)}; end phaseCurrents;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.phasePowers Buildings.Electrical.PhaseSystems.ThreePhase_dq.phasePowers

Return phase powers

Information

Extends from (Return phase powers).

Inputs

TypeNameDefaultDescription
ActivePowerP active system power [W]
Anglephi0phase angle [rad]

Outputs

TypeNameDescription
Powerp[n]phase powers [W]

Modelica definition

redeclare function extends phasePowers "Return phase powers" algorithm p := {P, P*tan(phi)}; end phasePowers;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.phasePowers_vi Buildings.Electrical.PhaseSystems.ThreePhase_dq.phasePowers_vi

Return phase powers

Information

Extends from (Return phase powers).

Inputs

TypeNameDefaultDescription
Voltagev[n] phase voltages [V]
Currenti[n] phase currents [A]

Outputs

TypeNameDescription
Powerp[n]phase powers [W]

Modelica definition

redeclare function extends phasePowers_vi "Return phase powers" algorithm p := {v*i, -j(v)*i}; end phasePowers_vi;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.systemVoltage Buildings.Electrical.PhaseSystems.ThreePhase_dq.systemVoltage

Return system voltage as function of phase voltages

Information

Extends from (Return system voltage as function of phase voltages).

Inputs

TypeNameDefaultDescription
Voltagev[n] [V]

Outputs

TypeNameDescription
VoltageV[V]

Modelica definition

redeclare function extends systemVoltage "Return system voltage as function of phase voltages" algorithm V := Modelica.Fluid.Utilities.regRoot(3*v*v, delta = 1e-5); end systemVoltage;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.systemCurrent Buildings.Electrical.PhaseSystems.ThreePhase_dq.systemCurrent

Return system current as function of phase currents

Information

Extends from (Return system current as function of phase currents).

Inputs

TypeNameDefaultDescription
Currenti[n] [A]

Outputs

TypeNameDescription
CurrentI[A]

Modelica definition

redeclare function extends systemCurrent "Return system current as function of phase currents" algorithm I := Modelica.Fluid.Utilities.regRoot(i*i, delta = 1e-5); end systemCurrent;

Buildings.Electrical.PhaseSystems.ThreePhase_dq.activePower Buildings.Electrical.PhaseSystems.ThreePhase_dq.activePower

Return total power as function of phase powers

Information

Extends from (Return total power as function of phase powers).

Inputs

TypeNameDefaultDescription
Voltagev[n] phase voltages [V]
Currenti[n] phase currents [A]

Outputs

TypeNameDescription
ActivePowerPactive system power [W]

Modelica definition

redeclare function extends activePower "Return total power as function of phase powers" algorithm P := v[1]*i[1]; end activePower;