Buildings.ThermalZones.Detailed.Constructions.Examples

Collection of models that illustrate model use and test models

Information

This package contains examples for the use of models that can be found in Buildings.ThermalZones.Detailed.Constructions.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWall ExteriorWall Test model for an exterior wall without a window
Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallTwoWindows ExteriorWallTwoWindows Test model for an exterior wall with two windows, one having a shade, the other not
Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallWithWindow ExteriorWallWithWindow Test model for an exterior wall with a window

Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWall Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWall

Test model for an exterior wall without a window

Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWall

Information

This model tests the exterior construction without windows.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Insulation100Concrete200extConMat Record for material layers
ParameterConstructionconPar[1]conPar( each til=Buildings...Data for construction

Modelica definition

model ExteriorWall "Test model for an exterior wall without a window" extends Modelica.Icons.Example; parameter HeatTransfer.Data.OpaqueConstructions.Insulation100Concrete200 extConMat "Record for material layers"; parameter Buildings.ThermalZones.Detailed.BaseClasses.ParameterConstruction conPar[1]( each til=Buildings.Types.Tilt.Wall, each azi=0, each A=3*10, layers={extConMat}) "Data for construction"; Buildings.ThermalZones.Detailed.Constructions.Construction conExt[1]( each stateAtSurface_a=false, each stateAtSurface_b=false, A=conPar[:].A, layers=conPar.layers, til={Buildings.Types.Tilt.Wall}) "Construction of an exterior wall without a window"; Buildings.ThermalZones.Detailed.BaseClasses.ExteriorBoundaryConditions bouConExt( nCon=1, linearizeRadiation = false, conMod=Buildings.HeatTransfer.Types.ExteriorConvection.TemperatureWind, lat=0.73268921998722, conPar=conPar) "Exterior boundary conditions for constructions without a window"; Buildings.HeatTransfer.Sources.PrescribedTemperature prescribedTemperature; Buildings.HeatTransfer.Convection.Interior con[ 1](A={3*10}, til={Buildings.Types.Tilt.Wall}) "Model for heat convection"; Modelica.Thermal.HeatTransfer.Components.ThermalCollector theCol(m=1) "Thermal collector to link a vector of models to a single model"; BoundaryConditions.WeatherData.ReaderTMY3 weaDat(filNam= Modelica.Utilities.Files.loadResource("modelica://Buildings/Resources/weatherdata/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.mos")); Modelica.Blocks.Sources.Constant TRoo(k=273.15 + 20) "Room air temperature"; equation connect(prescribedTemperature.port, theCol.port_b); connect(theCol.port_a, con.fluid); connect(weaDat.weaBus, bouConExt.weaBus); connect(TRoo.y, prescribedTemperature.T); connect(con.solid, conExt.opa_b); connect(bouConExt.opa_a, conExt.opa_a); end ExteriorWall;

Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallTwoWindows Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallTwoWindows

Test model for an exterior wall with two windows, one having a shade, the other not

Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallTwoWindows

Information

This model tests the exterior construction with two windows.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
IntegernCon2Number of constructions
AreaA[:]{3*10,3*10}Heat transfer area of wall and window [m2]
LengthhWin[:]{2,1}Window height [m]
LengthwWin[:]{3,3}Window width [m]
AreaAWin[:]hWin .* wWinHeat transfer area of frame and window [m2]
RealfFra[:]{0.1,0.1}Fraction of window frame divided by total window area
BooleanlinearizeRadiationfalseSet to true to linearize emissive power
DoubleClearAir13ClearglaSys1glaSys1( UFra=2, shade...Record for glazing system
DoubleClearAir13ClearglaSys2glaSys2( UFra=2, shade...Record for glazing system
ParameterConstructionWithWindowconPar[nCon]conPar( each layers = extC...Construction parameters
Insulation100Concrete200extConMat Record for material layers

Modelica definition

model ExteriorWallTwoWindows "Test model for an exterior wall with two windows, one having a shade, the other not" extends Modelica.Icons.Example; parameter Integer nCon = 2 "Number of constructions"; parameter Modelica.SIunits.Area A[:]={3*10, 3*10} "Heat transfer area of wall and window"; parameter Modelica.SIunits.Length hWin[:] = {2, 1} "Window height"; parameter Modelica.SIunits.Length wWin[:] = {3, 3} "Window width"; parameter Modelica.SIunits.Area AWin[:]= hWin .* wWin "Heat transfer area of frame and window"; parameter Real fFra[:]={0.1, 0.1} "Fraction of window frame divided by total window area"; parameter Boolean linearizeRadiation = false "Set to true to linearize emissive power"; parameter HeatTransfer.Data.GlazingSystems.DoubleClearAir13Clear glaSys1( UFra=2, shade=Buildings.HeatTransfer.Data.Shades.Gray(), haveInteriorShade=false, haveExteriorShade=false) "Record for glazing system"; parameter HeatTransfer.Data.GlazingSystems.DoubleClearAir13Clear glaSys2( UFra=2, shade=Buildings.HeatTransfer.Data.Shades.Gray(), haveInteriorShade=false, haveExteriorShade=false) "Record for glazing system"; parameter Buildings.ThermalZones.Detailed.BaseClasses.ParameterConstructionWithWindow conPar[nCon]( each layers = extConMat, each til=Buildings.Types.Tilt.Wall, each azi=0.017453292519943, A=A, hWin=hWin, wWin=wWin, glaSys = {glaSys1, glaSys2}) "Construction parameters"; parameter HeatTransfer.Data.OpaqueConstructions.Insulation100Concrete200 extConMat "Record for material layers"; ConstructionWithWindow conExt[nCon]( layers=conPar.layers, glaSys=conPar[:].glaSys, linearizeRadiation = {linearizeRadiation, linearizeRadiation}, A=conPar[:].A, AWin=conPar[:].hWin .* conPar[:].wWin, fFra=conPar[:].fFra, til=conPar[:].til) "Construction of an exterior wall with a window"; Buildings.ThermalZones.Detailed.BaseClasses.ExteriorBoundaryConditionsWithWindow bouConExt( nCon=2, linearizeRadiation = false, conMod=Buildings.HeatTransfer.Types.ExteriorConvection.Fixed, lat=0.73268921998722, conPar=conPar) "Exterior boundary conditions for constructions with a window"; Buildings.HeatTransfer.Sources.FixedTemperature TRoo(T=293.15) "Room temperature"; Buildings.HeatTransfer.Convection.Interior con[nCon](A=A - AWin, til={Buildings.Types.Tilt.Wall, Buildings.Types.Tilt.Wall}) "Model for heat convection"; Modelica.Thermal.HeatTransfer.Components.ThermalCollector theCol(m=2) "Thermal collector to link a vector of models to a single model"; BoundaryConditions.WeatherData.ReaderTMY3 weaDat(filNam= Modelica.Utilities.Files.loadResource("modelica://Buildings/Resources/weatherdata/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.mos")); Modelica.Blocks.Sources.Constant uSha(k=0) "Shading control signal"; Modelica.Thermal.HeatTransfer.Components.ThermalCollector theCol1(m=2) "Thermal collector to link a vector of models to a single model"; HeatTransfer.Radiosity.IndoorRadiosity indRad[nCon](each linearize = linearizeRadiation, A=AWin) "Model for indoor radiosity"; Modelica.Blocks.Routing.Replicator replicator(nout=nCon); Modelica.Thermal.HeatTransfer.Components.ThermalCollector theCol3( m=2) "Thermal collector to link a vector of models to a single model"; Modelica.Blocks.Sources.Constant QAbsSha[nCon](each k=0) "Solar radiation absorbed by interior shade"; Modelica.Blocks.Sources.Constant QAbs[nCon, size(glaSys1.glass, 1)](each k=0) "Solar radiation absorbed by glass"; Modelica.Blocks.Sources.Constant QTra[nCon](each k=0) "Solar radiation absorbed by exterior shade"; Buildings.HeatTransfer.Windows.BaseClasses.ShadeRadiation intShaRad[nCon]( thisSideHasShade={glaSys1.haveInteriorShade, glaSys2.haveInteriorShade}, each linearize=linearize, absIR_air={glaSys1.shade.absIR_a, glaSys2.shade.absIR_a}, absIR_glass={glaSys1.shade.absIR_b, glaSys2.shade.absIR_b}, tauIR_air={glaSys1.shade.tauIR_a, glaSys2.shade.tauIR_a}, tauIR_glass={glaSys1.shade.tauIR_b, glaSys2.shade.tauIR_b}, A=AGla) if glaSys1.haveShade or glaSys2.haveShade "Interior shade radiation model"; Buildings.HeatTransfer.Windows.InteriorHeatTransferConvective intShaCon[nCon]( A=A, fFra=fFra, til=conPar[:].til, haveExteriorShade={glaSys1.haveExteriorShade, glaSys2.haveExteriorShade}, haveInteriorShade={glaSys1.haveInteriorShade, glaSys2.haveInteriorShade}) "Model for interior shade heat transfer"; protected Modelica.Blocks.Math.Sum sumJ[nCon](each nin=if glaSys1.haveShade or glaSys2.haveShade then 2 else 1) "Sum of radiosity fom glass to outside"; Buildings.HeatTransfer.Radiosity.RadiositySplitter radShaOut[nCon] "Radiosity that strikes shading device"; equation connect(TRoo.port, theCol.port_b); connect(theCol.port_a, con.fluid); connect(weaDat.weaBus, bouConExt.weaBus); connect(theCol1.port_b, TRoo.port); connect(uSha.y, replicator.u); connect(theCol3.port_b, TRoo.port); connect(bouConExt.uSha, replicator.y); connect(QAbs.y, conExt.QAbsUns_flow); connect(QAbs.y, conExt.QAbsSha_flow); connect(QTra.y, bouConExt.QAbsSolSha_flow); connect(con.solid, conExt.opa_b); connect(replicator.y, conExt.uSha); connect(conExt.opa_a, bouConExt.opa_a); connect(bouConExt.JOutUns, conExt.JInUns_a); connect(conExt.JOutUns_a, bouConExt.JInUns); connect(bouConExt.glaUns, conExt.glaUns_a); connect(bouConExt.glaSha, conExt.glaSha_a); connect(bouConExt.JOutSha, conExt.JInSha_a); connect(conExt.JOutSha_a, bouConExt.JInSha); connect(bouConExt.fra, conExt.fra_a); connect(intShaCon.TSha,intShaRad. TSha); connect(QAbsSha.y,intShaRad [1].QSolAbs_flow); connect(intShaCon.QRadAbs_flow,intShaRad. QRadAbs_flow); connect(theCol1.port_a,intShaCon. air); connect(intShaRad.JOut_air,sumJ. u[2]); connect(radShaOut.JOut_1,intShaRad. JIn_air); connect(radShaOut.JOut_2, conExt.JInUns_b); connect(conExt.JOutUns_b,sumJ. u[1]); connect(intShaRad.JOut_glass, conExt.JInSha_b); connect(intShaRad.JIn_glass, conExt.JOutSha_b); connect(conExt.glaUns_b, intShaCon.glaUns); connect(intShaCon.glaSha, conExt.glaSha_b); connect(conExt.fra_b, intShaCon.frame); connect(sumJ.y, indRad.JIn); connect(theCol3.port_a, indRad.heatPort); connect(replicator.y, radShaOut.u); connect(indRad.JOut, radShaOut.JIn); end ExteriorWallTwoWindows;

Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallWithWindow Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallWithWindow

Test model for an exterior wall with a window

Buildings.ThermalZones.Detailed.Constructions.Examples.ExteriorWallWithWindow

Information

This model tests the exterior constructions with windows.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
AreaA3*10Heat transfer area of wall and window [m2]
LengthhWin2Window height [m]
LengthwWin3Window width [m]
AreaAWinhWin*wWinHeat transfer area of frame and window [m2]
RealfFra0.1Fraction of window frame divided by total window area
BooleanlinearizeRadiationfalseSet to true to linearize emissive power
DoubleClearAir13ClearglaSysglaSys( UFra=2, shade=...Record for glazing system
Insulation100Concrete200extConMat Record for material layers
ParameterConstructionWithWindowconParconPar( til=Buildings.Type...Data for construction with window

Modelica definition

model ExteriorWallWithWindow "Test model for an exterior wall with a window" extends Modelica.Icons.Example; parameter Modelica.SIunits.Area A=3*10 "Heat transfer area of wall and window"; parameter Modelica.SIunits.Length hWin = 2 "Window height"; parameter Modelica.SIunits.Length wWin = 3 "Window width"; parameter Modelica.SIunits.Area AWin=hWin*wWin "Heat transfer area of frame and window"; parameter Real fFra=0.1 "Fraction of window frame divided by total window area"; parameter Boolean linearizeRadiation = false "Set to true to linearize emissive power"; parameter HeatTransfer.Data.GlazingSystems.DoubleClearAir13Clear glaSys( UFra=2, shade=Buildings.HeatTransfer.Data.Shades.Gray(), haveExteriorShade=false, haveInteriorShade=false) "Record for glazing system"; parameter HeatTransfer.Data.OpaqueConstructions.Insulation100Concrete200 extConMat "Record for material layers"; parameter Buildings.ThermalZones.Detailed.BaseClasses.ParameterConstructionWithWindow conPar( til=Buildings.Types.Tilt.Wall, azi=0, layers=extConMat, glaSys=glaSys, A=A, hWin=hWin, wWin=wWin) "Data for construction with window"; ConstructionWithWindow conExt[1]( layers={conPar.layers}, glaSys={conPar.glaSys}, linearizeRadiation = {linearizeRadiation}, A={conPar.A}, AWin={conPar.hWin * conPar.wWin}, fFra={conPar.fFra}, til={conPar.til}) "Construction of an exterior wall with a window"; Buildings.ThermalZones.Detailed.BaseClasses.ExteriorBoundaryConditionsWithWindow bouConExt( nCon=1, linearizeRadiation = linearizeRadiation, conMod=Buildings.HeatTransfer.Types.ExteriorConvection.Fixed, lat=0.73268921998722, conPar={conPar}) "Exterior boundary conditions for constructions with a window"; Buildings.HeatTransfer.Sources.FixedTemperature TRoo(T=293.15) "Room temperature"; Buildings.HeatTransfer.Convection.Interior con[1]( each A=A .- AWin, til={Buildings.Types.Tilt.Wall}) "Model for heat convection"; Modelica.Thermal.HeatTransfer.Components.ThermalCollector theCol(m=1) "Thermal collector to link a vector of models to a single model"; BoundaryConditions.WeatherData.ReaderTMY3 weaDat(filNam= Modelica.Utilities.Files.loadResource("modelica://Buildings/Resources/weatherdata/USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.mos")); Modelica.Blocks.Sources.Constant uSha(k=0) "Shading control signal"; Modelica.Thermal.HeatTransfer.Components.ThermalCollector theCol1(m=1) "Thermal collector to link a vector of models to a single model"; HeatTransfer.Radiosity.IndoorRadiosity indRad(A=AWin, linearize= linearizeRadiation) "Model for indoor radiosity"; Modelica.Blocks.Sources.Constant QAbs[1,size(glaSys.glass, 1)](each k=0) "Solar radiation absorbed by glass"; Modelica.Blocks.Sources.Constant QAbsSha(k=0) "Solar radiation absorbed by interior shade"; Modelica.Blocks.Sources.Constant QTra(k=0) "Solar radiation absorbed by exterior shade"; Buildings.HeatTransfer.Windows.InteriorHeatTransferConvective intShaCon[1]( each A=A, each fFra=fFra, each til=conPar.til, each haveExteriorShade=glaSys.haveExteriorShade, each haveInteriorShade=glaSys.haveInteriorShade) "Model for interior shade heat transfer"; Buildings.HeatTransfer.Windows.BaseClasses.ShadeRadiation intShaRad[1]( each thisSideHasShade=glaSys.haveInteriorShade, each linearize=linearize, each absIR_air=glaSys.shade.absIR_a, each absIR_glass=glaSys.shade.absIR_b, each tauIR_air=glaSys.shade.tauIR_a, each tauIR_glass=glaSys.shade.tauIR_b, each A=AGla) if glaSys.haveShade "Interior shade radiation model"; protected Modelica.Blocks.Math.Sum sumJ[1](each nin=if glaSys.haveShade then 2 else 1) "Sum of radiosity fom glass to outside"; Buildings.HeatTransfer.Radiosity.RadiositySplitter radShaOut[1] "Radiosity that strikes shading device"; equation connect(TRoo.port, theCol.port_b); connect(theCol.port_a, con.fluid); connect(weaDat.weaBus, bouConExt.weaBus); connect(theCol1.port_b, TRoo.port); connect(indRad.heatPort, TRoo.port); connect(uSha.y, bouConExt.uSha[1]); if glaSys.haveShade then connect(uSha.y, conExt[1].uSha); connect(QAbs.y, conExt.QAbsSha_flow); connect(intShaCon.glaSha, conExt.glaSha_b); connect(intShaCon[1].uSha, uSha.y); end if; connect(QAbs.y, conExt.QAbsUns_flow); connect(QTra.y, bouConExt.QAbsSolSha_flow[1]); connect(conExt.opa_b, con.solid); connect(conExt.opa_a, bouConExt.opa_a); connect(conExt.JInUns_a, bouConExt.JOutUns); connect(conExt.JOutUns_a, bouConExt.JInUns); connect(conExt.glaUns_a, bouConExt.glaUns); connect(conExt.glaSha_a, bouConExt.glaSha); connect(conExt.JInSha_a, bouConExt.JOutSha); connect(conExt.JOutSha_a, bouConExt.JInSha); connect(conExt.fra_a, bouConExt.fra); connect(intShaCon.QRadAbs_flow,intShaRad. QRadAbs_flow); connect(intShaCon.TSha,intShaRad. TSha); connect(intShaRad.JOut_glass, conExt.JInSha_b); connect(intShaRad.JIn_glass, conExt.JOutSha_b); connect(conExt.glaUns_b, intShaCon.glaUns); connect(theCol1.port_a, intShaCon.air); connect(uSha.y, intShaRad[1].u); connect(conExt.JOutUns_b, sumJ.u[1]); connect(intShaRad.JOut_air, sumJ.u[2]); connect(radShaOut[1].u, uSha.y); connect(radShaOut.JOut_1, intShaRad.JIn_air); connect(radShaOut.JOut_2, conExt.JInUns_b); connect(QAbsSha.y, intShaRad[1].QSolAbs_flow); connect(indRad.JOut, radShaOut[1].JIn); connect(indRad.JIn, sumJ[1].y); connect(conExt.fra_b, intShaCon.frame); end ExteriorWallWithWindow;