Buildings.Fluid.Chillers.Examples.BaseClasses

Package with base classes for Buildings.Fluid.Chillers.Examples

Information

This package contains base classes that are used to construct the models in Buildings.Fluid.Chillers.Examples.

Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).

Package Content

Name Description
Buildings.Fluid.Chillers.Examples.BaseClasses.PartialElectric PartialElectric Base class for test model of chiller electric EIR

Buildings.Fluid.Chillers.Examples.BaseClasses.PartialElectric

Base class for test model of chiller electric EIR

Buildings.Fluid.Chillers.Examples.BaseClasses.PartialElectric

Parameters

TypeNameDefaultDescription
PowerP_nominal Nominal compressor power (at y=1) [W]
TemperatureDifferencedTEva_nominal10Temperature difference evaporator inlet-outlet [K]
TemperatureDifferencedTCon_nominal10Temperature difference condenser outlet-inlet [K]
RealCOPc_nominal3Chiller COP
MassFlowRatemEva_flow_nominal Nominal mass flow rate at evaporator [kg/s]
MassFlowRatemCon_flow_nominal Nominal mass flow rate at condenser [kg/s]

Modelica definition

partial model PartialElectric "Base class for test model of chiller electric EIR" package Medium1 = Buildings.Media.Water "Medium model"; package Medium2 = Buildings.Media.Water "Medium model"; parameter Modelica.SIunits.Power P_nominal "Nominal compressor power (at y=1)"; parameter Modelica.SIunits.TemperatureDifference dTEva_nominal=10 "Temperature difference evaporator inlet-outlet"; parameter Modelica.SIunits.TemperatureDifference dTCon_nominal=10 "Temperature difference condenser outlet-inlet"; parameter Real COPc_nominal = 3 "Chiller COP"; parameter Modelica.SIunits.MassFlowRate mEva_flow_nominal "Nominal mass flow rate at evaporator"; parameter Modelica.SIunits.MassFlowRate mCon_flow_nominal "Nominal mass flow rate at condenser"; Buildings.Fluid.Sources.MassFlowSource_T sou1( redeclare package Medium = Medium1, use_T_in=true, m_flow=mCon_flow_nominal, T=298.15); Buildings.Fluid.Sources.MassFlowSource_T sou2( redeclare package Medium = Medium2, use_T_in=true, m_flow=mEva_flow_nominal, T=291.15); Buildings.Fluid.Sources.FixedBoundary sin1( redeclare package Medium = Medium1, nPorts=1); Buildings.Fluid.Sources.FixedBoundary sin2( redeclare package Medium = Medium2, nPorts=1); Modelica.Blocks.Sources.Ramp TSet( duration=3600, startTime=3*3600, offset=273.15 + 10, height=8) "Set point for leaving chilled water temperature"; Modelica.Blocks.Sources.Ramp TCon_in( height=10, offset=273.15 + 20, duration=3600, startTime=2*3600) "Condenser inlet temperature"; Modelica.Blocks.Sources.Ramp TEva_in( offset=273.15 + 15, height=5, startTime=3600, duration=3600) "Evaporator inlet temperature"; Modelica.Blocks.Sources.Pulse pulse(period=3600/2); Modelica.Blocks.Logical.GreaterThreshold greaterThreshold(threshold=0.5); Buildings.Fluid.FixedResistances.PressureDrop res1( redeclare package Medium = Medium1, m_flow_nominal=mCon_flow_nominal, dp_nominal=6000) "Flow resistance"; Buildings.Fluid.FixedResistances.PressureDrop res2( dp_nominal=6000, redeclare package Medium = Medium2, m_flow_nominal=mEva_flow_nominal) "Flow resistance"; equation connect(TCon_in.y, sou1.T_in); connect(TEva_in.y, sou2.T_in); connect(greaterThreshold.u, pulse.y); connect(res1.port_b, sin1.ports[1]); connect(res2.port_b, sin2.ports[1]); end PartialElectric;