LBL logo

Buildings.Utilities.Psychrometrics.Functions.Internal

Solve f(x, data) for x with given f

Information

Function to compute the dew point temperature based on the partial water vapor concentration.

Extends from Modelica.Media.Common.OneNonLinearEquation (Determine solution of a non-linear algebraic equation in one unknown without derivatives in a reliable and efficient way).

Package Content

Name Description
Buildings.Utilities.Psychrometrics.Functions.Internal.f_nonlinear f_nonlinear  
Inherited
Modelica.Media.Common.OneNonLinearEquation.f_nonlinear_Data f_nonlinear_Data Data specific for function f_nonlinear
Modelica.Media.Common.OneNonLinearEquation.solve solve Solve f_nonlinear(x_zero)=y_zero; f_nonlinear(x_min) - y_zero and f_nonlinear(x_max)-y_zero must have different sign

Buildings.Utilities.Psychrometrics.Functions.Internal.f_nonlinear Buildings.Utilities.Psychrometrics.Functions.Internal.f_nonlinear

Information

Extends from (Nonlinear algebraic equation in one unknown: y = f_nonlinear(x,p,X)).

Inputs

TypeNameDefaultDescription
Realx Independent variable of function
Realp0.0Disregarded variables (here always used for pressure)
RealX[:]fill(0, 0)Disregarded variables (her always used for composition)
f_nonlinear_Dataf_nonlinear_data Additional data for the function

Outputs

TypeNameDescription
Realy= f_nonlinear(x)

Modelica definition

redeclare function extends f_nonlinear algorithm y := pW_TDewPoi(x); end f_nonlinear;

http://simulationresearch.lbl.gov/modelica