LBL logo

Buildings.Fluid.MixingVolumes.BaseClasses

Package with base classes for Buildings.Fluid.MixingVolumes

Information

This package contains base classes that are used to construct the models in Buildings.Fluid.MixingVolumes.

Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).

Package Content

Name Description
Buildings.Fluid.MixingVolumes.BaseClasses.PartialMixingVolume PartialMixingVolume Partial mixing volume with inlet and outlet ports (flow reversal is allowed)

Buildings.Fluid.MixingVolumes.BaseClasses.PartialMixingVolume Buildings.Fluid.MixingVolumes.BaseClasses.PartialMixingVolume

Partial mixing volume with inlet and outlet ports (flow reversal is allowed)

Buildings.Fluid.MixingVolumes.BaseClasses.PartialMixingVolume

Information

This is a partial model of an instantaneously mixed volume. It is used as the base class for all fluid volumes of the package Buildings.Fluid.MixingVolumes.

To increase the numerical robustness of the model, the parameter prescribedHeatFlowRate can be set by the user. This parameter only has an effect if the model has exactly two fluid ports connected, and if it is used as a steady-state model. Use the following settings:

Implementation

If the model is (i) operated in steady-state, (ii) has two fluid ports connected, and (iii) prescribedHeatFlowRate=true, then the model uses Buildings.Fluid.Interfaces.StaticTwoPortConservationEquation in order to use the same energy and mass balance implementation as is used as in steady-state component models. In this situation, the functions inStream are used for the two flow directions rather than the function actualStream, which is less efficient. However, the use of inStream has the disadvantage that hOut has to be computed, in Buildings.Fluid.Interfaces.StaticTwoPortConservationEquation, using

if allowFlowReversal then
  hOut = Buildings.Utilities.Math.Functions.spliceFunction(pos=port_b.h_outflow,
                                                           neg=port_a.h_outflow,
                                                           x=port_a.m_flow,
                                                           deltax=m_flow_small/1E3);
else
  hOut = port_b.h_outflow;
end if;

Hence, for allowFlowReversal=true, if hOut were to be used to compute the temperature that drives heat transfer such as by conduction, then the heat transfer would depend on upstream and the downstream temperatures for small mass flow rates. This can give wrong results. Consider for example a mass flow rate that is positive but very close to zero. Suppose the upstream temperature is 20ˆC, the downstream temperature is 10ˆC, and the heat port is connected through a heat conductor to a boundary condition of 20ˆC. Then, hOut = (port_b.h_outflow + port_a.h_outflow)/2 and hence the temperature heatPort.T is 15ˆC. Therefore, heat is added to the component. As the mass flow rate is by assumption very small, the fluid that leaves the component will have a very high temperature, violating the 2nd law. To avoid this situation, if prescribedHeatFlowRate=false, then the model Buildings.Fluid.Interfaces.ConservationEquation is used instead of Buildings.Fluid.Interfaces.StaticTwoPortConservationEquation.

For simple models that uses this model, see Buildings.Fluid.MixingVolumes.

Extends from Buildings.Fluid.Interfaces.LumpedVolumeDeclarations (Declarations for lumped volumes).

Parameters

TypeNameDefaultDescription
replaceable package MediumPartialMediumMedium in the component
VolumeV Volume [m3]
Nominal condition
MassFlowRatem_flow_nominal Nominal mass flow rate [kg/s]
Dynamics
Equations
DynamicsenergyDynamicsModelica.Fluid.Types.Dynamic...Formulation of energy balance
DynamicsmassDynamicsenergyDynamicsFormulation of mass balance
RealmSenFac1Factor for scaling the sensible thermal mass of the volume
Initialization
AbsolutePressurep_startMedium.p_defaultStart value of pressure [Pa]
TemperatureT_startMedium.T_defaultStart value of temperature [K]
MassFractionX_start[Medium.nX]Medium.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC_start[Medium.nC]fill(0, Medium.nC)Start value of trace substances
ExtraPropertyC_nominal[Medium.nC]fill(1E-2, Medium.nC)Nominal value of trace substances. (Set to typical order of magnitude.)
Advanced
MassFlowRatem_flow_small1E-4*abs(m_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
Assumptions
BooleanallowFlowReversaltrue= true to allow flow reversal in medium, false restricts to design direction (ports[1] -> ports[2]). Used only if model has two ports.
Heat transfer
BooleanprescribedHeatFlowRatefalseSet to true if the model has a prescribed heat flow at its heatPort. If the heat flow rate at the heatPort is only based on temperature difference, then set to false.

Connectors

TypeNameDescription
VesselFluidPorts_bports[nPorts]Fluid inlets and outlets
HeatPort_aheatPortHeat port for sensible heat input

Modelica definition

partial model PartialMixingVolume "Partial mixing volume with inlet and outlet ports (flow reversal is allowed)" extends Buildings.Fluid.Interfaces.LumpedVolumeDeclarations; constant Boolean initialize_p = not Medium.singleState "= true to set up initial equations for pressure"; parameter Modelica.SIunits.MassFlowRate m_flow_nominal(min=0) "Nominal mass flow rate"; // Port definitions parameter Integer nPorts=0 "Number of ports"; parameter Modelica.SIunits.MassFlowRate m_flow_small(min=0) = 1E-4*abs(m_flow_nominal) "Small mass flow rate for regularization of zero flow"; parameter Boolean allowFlowReversal = true "= true to allow flow reversal in medium, false restricts to design direction (ports[1] -> ports[2]). Used only if model has two ports."; parameter Modelica.SIunits.Volume V "Volume"; parameter Boolean prescribedHeatFlowRate=false "Set to true if the model has a prescribed heat flow at its heatPort. If the heat flow rate at the heatPort is only based on temperature difference, then set to false."; Modelica.Fluid.Vessels.BaseClasses.VesselFluidPorts_b ports[nPorts]( redeclare each package Medium = Medium) "Fluid inlets and outlets"; Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a heatPort( T(start=T_start)) "Heat port for sensible heat input"; Medium.Temperature T "Temperature of the fluid"; Modelica.SIunits.Pressure p "Pressure of the fluid"; Modelica.SIunits.MassFraction Xi[Medium.nXi] "Species concentration of the fluid"; Medium.ExtraProperty C[Medium.nC](nominal=C_nominal) "Trace substance mixture content"; // Models for the steady-state and dynamic energy balance. protected Buildings.Fluid.Interfaces.StaticTwoPortConservationEquation steBal( sensibleOnly = true, redeclare final package Medium=Medium, final m_flow_nominal = m_flow_nominal, final allowFlowReversal = allowFlowReversal, final m_flow_small = m_flow_small) if useSteadyStateTwoPort "Model for steady-state balance if nPorts=2"; Buildings.Fluid.Interfaces.ConservationEquation dynBal( redeclare final package Medium = Medium, final energyDynamics=energyDynamics, final massDynamics=massDynamics, final p_start=p_start, final T_start=T_start, final X_start=X_start, final C_start=C_start, final C_nominal=C_nominal, final fluidVolume = V, final initialize_p = initialize_p, m(start=V*rho_start), nPorts=nPorts, final mSenFac=mSenFac) if not useSteadyStateTwoPort "Model for dynamic energy balance"; // Density at start values, used to compute initial values and start guesses parameter Modelica.SIunits.Density rho_start=Medium.density( state=state_start) "Density, used to compute start and guess values"; final parameter Medium.ThermodynamicState state_default = Medium.setState_pTX( T=Medium.T_default, p=Medium.p_default, X=Medium.X_default[1:Medium.nXi]) "Medium state at default values"; // Density at medium default values, used to compute the size of control volumes final parameter Modelica.SIunits.Density rho_default=Medium.density( state=state_default) "Density, used to compute fluid mass"; final parameter Medium.ThermodynamicState state_start = Medium.setState_pTX( T=T_start, p=p_start, X=X_start[1:Medium.nXi]) "Medium state at start values"; // See info section for why prescribedHeatFlowRate is used here. final parameter Boolean useSteadyStateTwoPort=(nPorts == 2) and (prescribedHeatFlowRate or (not allowFlowReversal)) and ( energyDynamics == Modelica.Fluid.Types.Dynamics.SteadyState) and ( massDynamics == Modelica.Fluid.Types.Dynamics.SteadyState) and ( substanceDynamics == Modelica.Fluid.Types.Dynamics.SteadyState) and ( traceDynamics == Modelica.Fluid.Types.Dynamics.SteadyState) "Flag, true if the model has two ports only and uses a steady state balance"; // Outputs that are needed to assign the medium properties Modelica.Blocks.Interfaces.RealOutput hOut_internal(unit="J/kg") "Internal connector for leaving temperature of the component"; Modelica.Blocks.Interfaces.RealOutput XiOut_internal[Medium.nXi](each unit="1") "Internal connector for leaving species concentration of the component"; Modelica.Blocks.Interfaces.RealOutput COut_internal[Medium.nC](each unit="1") "Internal connector for leaving trace substances of the component"; Modelica.Blocks.Sources.RealExpression QSen_flow(y=heatPort.Q_flow) "Block to set sensible heat input into volume"; equation /////////////////////////////////////////////////////////////////////////// // asserts if not allowFlowReversal then assert(ports[1].m_flow > -m_flow_small, "Model has flow reversal, but the parameter allowFlowReversal is set to false. m_flow_small = " + String(m_flow_small) + " ports[1].m_flow = " + String(ports[1].m_flow) + " "); end if; // Actual definition of port variables. // // If the model computes the energy and mass balances as steady-state, // and if it has only two ports, // then we use the same base class as for all other steady state models. if useSteadyStateTwoPort then connect(steBal.port_a, ports[1]); connect(steBal.port_b, ports[2]); connect(hOut_internal, steBal.hOut); connect(XiOut_internal, steBal.XiOut); connect(COut_internal, steBal.COut); else connect(dynBal.ports, ports); connect(hOut_internal, dynBal.hOut); connect(XiOut_internal, dynBal.XiOut); connect(COut_internal, dynBal.COut); end if; // Medium properties p = if nPorts > 0 then ports[1].p else p_start; T = Medium.temperature_phX(p=p, h=hOut_internal, X=cat(1,Xi,{1-sum(Xi)})); Xi = XiOut_internal; C = COut_internal; // Port properties heatPort.T = T; end PartialMixingVolume;

Automatically generated Mon Jul 13 14:25:42 2015.