This package contains base classes that are used to construct the models in Buildings.Fluid.FixedResistances.
Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).
Name | Description |
---|---|
Pipe | Model of a pipe with finite volume discretization along the flow path |
Model of a pipe with finite volume discretization along the flow path
Model of a pipe with flow resistance and optional heat storage.
This model can be used for modeling the heat exchange between the pipe and environment.
The model consists of a flow resistance
Buildings.Fluid.FixedResistances.FixedResistanceDpM
and nSeg
mixing volumes
Buildings.Fluid.MixingVolumes.MixingVolume.
Extends from Buildings.Fluid.Interfaces.LumpedVolumeDeclarations (Declarations for lumped volumes), Buildings.Fluid.Interfaces.PartialTwoPortInterface (Partial model transporting fluid between two ports without storing mass or energy), Buildings.Fluid.Interfaces.TwoPortFlowResistanceParameters (Parameters for flow resistance for models with two ports).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialMedium | Medium in the component | |
Integer | nSeg | 10 | Number of volume segments |
Length | thicknessIns | Thickness of insulation [m] | |
ThermalConductivity | lambdaIns | Heat conductivity of insulation [W/(m.K)] | |
Length | diameter | Pipe diameter (without insulation) [m] | |
Length | length | Length of the pipe [m] | |
Nominal condition | |||
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
Pressure | dp_nominal | Pressure difference [Pa] | |
Initialization | |||
MassFlowRate | m_flow.start | 0 | Mass flow rate from port_a to port_b (m_flow > 0 is design flow direction) [kg/s] |
Pressure | dp.start | 0 | Pressure difference between port_a and port_b [Pa] |
Dynamics | |||
Equations | |||
Dynamics | energyDynamics | Modelica.Fluid.Types.Dynamic... | Formulation of energy balance |
Dynamics | massDynamics | energyDynamics | Formulation of mass balance |
Real | mSenFac | 1 | Factor for scaling the sensible thermal mass of the volume |
Initialization | |||
AbsolutePressure | p_start | Medium.p_default | Start value of pressure [Pa] |
Temperature | T_start | Medium.T_default | Start value of temperature [K] |
MassFraction | X_start[Medium.nX] | Medium.X_default | Start value of mass fractions m_i/m [kg/kg] |
ExtraProperty | C_start[Medium.nC] | fill(0, Medium.nC) | Start value of trace substances |
ExtraProperty | C_nominal[Medium.nC] | fill(1E-2, Medium.nC) | Nominal value of trace substances. (Set to typical order of magnitude.) |
Assumptions | |||
Boolean | allowFlowReversal | true | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) |
Advanced | |||
MassFlowRate | m_flow_small | 1E-4*abs(m_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
Boolean | homotopyInitialization | true | = true, use homotopy method |
Diagnostics | |||
Boolean | show_T | true | = true, if actual temperature at port is computed |
Flow resistance | |||
Boolean | computeFlowResistance | (abs(dp_nominal) > Modelica.... | =true, compute flow resistance. Set to false to assume no friction |
Boolean | from_dp | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearizeFlowResistance | false | = true, use linear relation between m_flow and dp for any flow rate |
Real | deltaM | 0.1 | Fraction of nominal flow rate where flow transitions to laminar |
Real | ReC | 4000 | Reynolds number where transition to turbulent starts |
Type | Name | Description |
---|---|---|
FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) |
FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) |