LBL logo

Buildings.Fluid.Delays

Package with delay models

Information

This package contains components models for transport delays in piping networks.

The model Buildings.Fluid.Delays.DelayFirstOrder approximates transport delays using a first order differential equation.

For a discretized model of a pipe or duct, see Buildings.Fluid.FixedResistances.Pipe.

Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).

Package Content

Name Description
Buildings.Fluid.Delays.DelayFirstOrder DelayFirstOrder Delay element, approximated by a first order differential equation
Buildings.Fluid.Delays.Examples Examples Collection of models that illustrate model use and test models

Buildings.Fluid.Delays.DelayFirstOrder Buildings.Fluid.Delays.DelayFirstOrder

Delay element, approximated by a first order differential equation

Buildings.Fluid.Delays.DelayFirstOrder

Information

This model approximates a transport delay using a first order differential equations.

The model consists of a mixing volume with two ports. The size of the mixing volume is such that at the nominal mass flow rate m_flow_nominal, the time constant of the volume is equal to the parameter tau.

The heat flux connector is optional, it need not be connnected.

Extends from Buildings.Fluid.MixingVolumes.MixingVolume (Mixing volume with inlet and outlet ports (flow reversal is allowed)).

Parameters

TypeNameDefaultDescription
replaceable package MediumPartialMediumMedium in the component
VolumeVV_nominalVolume [m3]
Nominal condition
MassFlowRatem_flow_nominal Nominal mass flow rate [kg/s]
Dynamics
Equations
DynamicsenergyDynamicsModelica.Fluid.Types.Dynamic...Formulation of energy balance
DynamicsmassDynamicsenergyDynamicsFormulation of mass balance
RealmSenFac1Factor for scaling the sensible thermal mass of the volume
Nominal condition
Timetau60Time constant at nominal flow [s]
Initialization
AbsolutePressurep_startMedium.p_defaultStart value of pressure [Pa]
TemperatureT_startMedium.T_defaultStart value of temperature [K]
MassFractionX_start[Medium.nX]Medium.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC_start[Medium.nC]fill(0, Medium.nC)Start value of trace substances
ExtraPropertyC_nominal[Medium.nC]fill(1E-2, Medium.nC)Nominal value of trace substances. (Set to typical order of magnitude.)
Advanced
MassFlowRatem_flow_small1E-4*abs(m_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
Assumptions
BooleanallowFlowReversaltrue= true to allow flow reversal in medium, false restricts to design direction (ports[1] -> ports[2]). Used only if model has two ports.
Heat transfer
BooleanprescribedHeatFlowRatefalseSet to true if the model has a prescribed heat flow at its heatPort. If the heat flow rate at the heatPort is only based on temperature difference, then set to false.

Connectors

TypeNameDescription
VesselFluidPorts_bports[nPorts]Fluid inlets and outlets
HeatPort_aheatPortHeat port for sensible heat input

Modelica definition

model DelayFirstOrder "Delay element, approximated by a first order differential equation" extends Buildings.Fluid.MixingVolumes.MixingVolume(final V=V_nominal, final mSenFac=1); parameter Modelica.SIunits.Time tau = 60 "Time constant at nominal flow"; protected parameter Modelica.SIunits.Volume V_nominal = m_flow_nominal*tau/rho_default "Volume of delay element"; end DelayFirstOrder;

Automatically generated Mon Jul 13 14:24:16 2015.