LBL logo

Buildings.Fluid.Chillers

Package with chiller models

Information

This package contains components models for chillers. The model Buildings.Fluid.Chillers.Carnot computes the coefficient of performance based on a change in the Carnot effectiveness. The models Buildings.Fluid.Chillers.ElectricReformulatedEIR and Buildings.Fluid.Chillers.ElectricEIR use performance curves from the package Buildings.Fluid.Chillers.Data to compute the chiller performance.

Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).

Package Content

Name Description
Buildings.Fluid.Chillers.Carnot Carnot Chiller with performance curve adjusted based on Carnot efficiency
Buildings.Fluid.Chillers.ElectricEIR ElectricEIR Electric chiller based on the DOE-2.1 model
Buildings.Fluid.Chillers.ElectricReformulatedEIR ElectricReformulatedEIR Electric chiller based on the DOE-2.1 model, but with performance as a function of condenser leaving instead of entering temperature
Buildings.Fluid.Chillers.Data Data Performance data for electric chillers
Buildings.Fluid.Chillers.Examples Examples Collection of models that illustrate model use and test models
Buildings.Fluid.Chillers.BaseClasses BaseClasses Package with base classes for Buildings.Fluid.Chillers

Buildings.Fluid.Chillers.Carnot Buildings.Fluid.Chillers.Carnot

Chiller with performance curve adjusted based on Carnot efficiency

Buildings.Fluid.Chillers.Carnot

Information

This is model of a chiller whose coefficient of performance (COP) changes with temperatures in the same way as the Carnot efficiency changes. The COP at the nominal conditions can be specified by a parameter, or it can be computed by the model based on the Carnot effectiveness, in which case

COP0 = ηcar COPcar = ηcar Teva ⁄ (Tcon-Teva),

where Teva is the evaporator temperature and Tcon is the condenser temperature. On the Advanced tab, a user can specify the temperature that will be used as the evaporator (or condenser) temperature. The options are the temperature of the fluid volume, of port_a, of port_b, or the average temperature of port_a and port_b.

The chiller COP is computed as the product

COP = ηcar COPcar ηPL,

where ηcar is the Carnot effectiveness, COPcar is the Carnot efficiency and ηPL is a polynomial in the control signal y that can be used to take into account a change in COP at part load conditions.

On the Dynamics tag, the model can be parametrized to compute a transient or steady-state response. The transient response of the model is computed using a first order differential equation for the evaporator and condenser fluid volumes. The chiller outlet temperatures are equal to the temperatures of these lumped volumes.

Extends from Interfaces.FourPortHeatMassExchanger (Model transporting two fluid streams between four ports with storing mass or energy).

Parameters

TypeNameDefaultDescription
replaceable package Medium1PartialMediumMedium 1 in the component
replaceable package Medium2PartialMediumMedium 2 in the component
Nominal condition
MassFlowRatem1_flow_nominal Nominal mass flow rate [kg/s]
MassFlowRatem2_flow_nominal Nominal mass flow rate [kg/s]
Pressuredp1_nominal Pressure difference [Pa]
Pressuredp2_nominal Pressure difference [Pa]
PowerP_nominal Nominal compressor power (at y=1) [W]
TemperatureDifferencedTEva_nominal10Temperature difference evaporator inlet-outlet [K]
TemperatureDifferencedTCon_nominal10Temperature difference condenser outlet-inlet [K]
Initialization
MassFlowRatem1_flow.start0Mass flow rate from port_a1 to port_b1 (m1_flow > 0 is design flow direction) [kg/s]
Pressuredp1.start0Pressure difference between port_a1 and port_b1 [Pa]
MassFlowRatem2_flow.start0Mass flow rate from port_a2 to port_b2 (m2_flow > 0 is design flow direction) [kg/s]
Pressuredp2.start0Pressure difference between port_a2 and port_b2 [Pa]
Efficiency
Booleanuse_eta_CarnottrueSet to true to use Carnot efficiency
RealetaCar Carnot effectiveness (=COP/COP_Carnot)
RealCOP_nominal Coefficient of performance
TemperatureTCon_nominal303.15Condenser temperature [K]
TemperatureTEva_nominal278.15Evaporator temperature [K]
Reala[:]{1}Coefficients for efficiency curve (need p(a=a, y=1)=1)
Assumptions
BooleanallowFlowReversal1true= true to allow flow reversal in medium 1, false restricts to design direction (port_a -> port_b)
BooleanallowFlowReversal2true= true to allow flow reversal in medium 2, false restricts to design direction (port_a -> port_b)
Advanced
MassFlowRatem1_flow_small1E-4*abs(m1_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
MassFlowRatem2_flow_small1E-4*abs(m2_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
BooleanhomotopyInitializationtrue= true, use homotopy method
Diagnostics
Booleanshow_Tfalse= true, if actual temperature at port is computed
Temperature dependence
EfficiencyInputeffInpEvaBuildings.Fluid.Types.Effici...Temperatures of evaporator fluid used to compute Carnot efficiency
EfficiencyInputeffInpConBuildings.Fluid.Types.Effici...Temperatures of condenser fluid used to compute Carnot efficiency
Flow resistance
Medium 1
Booleanfrom_dp1false= true, use m_flow = f(dp) else dp = f(m_flow)
BooleanlinearizeFlowResistance1false= true, use linear relation between m_flow and dp for any flow rate
RealdeltaM10.1Fraction of nominal flow rate where flow transitions to laminar
Medium 2
Booleanfrom_dp2false= true, use m_flow = f(dp) else dp = f(m_flow)
BooleanlinearizeFlowResistance2false= true, use linear relation between m_flow and dp for any flow rate
RealdeltaM20.1Fraction of nominal flow rate where flow transitions to laminar
Dynamics
Nominal condition
Timetau130Time constant at nominal flow [s]
Timetau230Time constant at nominal flow [s]
Equations
DynamicsenergyDynamicsModelica.Fluid.Types.Dynamic...Formulation of energy balance
DynamicsmassDynamicsenergyDynamicsFormulation of mass balance
Initialization
Medium 1
AbsolutePressurep1_startMedium1.p_defaultStart value of pressure [Pa]
TemperatureT1_startMedium1.T_defaultStart value of temperature [K]
MassFractionX1_start[Medium1.nX]Medium1.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC1_start[Medium1.nC]fill(0, Medium1.nC)Start value of trace substances
ExtraPropertyC1_nominal[Medium1.nC]fill(1E-2, Medium1.nC)Nominal value of trace substances. (Set to typical order of magnitude.)
Medium 2
AbsolutePressurep2_startMedium2.p_defaultStart value of pressure [Pa]
TemperatureT2_startMedium2.T_defaultStart value of temperature [K]
MassFractionX2_start[Medium2.nX]Medium2.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC2_start[Medium2.nC]fill(0, Medium2.nC)Start value of trace substances
ExtraPropertyC2_nominal[Medium2.nC]fill(1E-2, Medium2.nC)Nominal value of trace substances. (Set to typical order of magnitude.)

Connectors

TypeNameDescription
FluidPort_aport_a1Fluid connector a1 (positive design flow direction is from port_a1 to port_b1)
FluidPort_bport_b1Fluid connector b1 (positive design flow direction is from port_a1 to port_b1)
FluidPort_aport_a2Fluid connector a2 (positive design flow direction is from port_a2 to port_b2)
FluidPort_bport_b2Fluid connector b2 (positive design flow direction is from port_a2 to port_b2)
input RealInputyPart load ratio
output RealOutputPElectric power consumed by compressor [W]

Modelica definition

model Carnot "Chiller with performance curve adjusted based on Carnot efficiency" extends Interfaces.FourPortHeatMassExchanger(vol1( prescribedHeatFlowRate = true), redeclare final Buildings.Fluid.MixingVolumes.MixingVolume vol2( prescribedHeatFlowRate = true)); parameter Buildings.Fluid.Types.EfficiencyInput effInpEva= Buildings.Fluid.Types.EfficiencyInput.volume "Temperatures of evaporator fluid used to compute Carnot efficiency"; parameter Buildings.Fluid.Types.EfficiencyInput effInpCon= Buildings.Fluid.Types.EfficiencyInput.port_a "Temperatures of condenser fluid used to compute Carnot efficiency"; parameter Modelica.SIunits.Power P_nominal "Nominal compressor power (at y=1)"; parameter Modelica.SIunits.TemperatureDifference dTEva_nominal = 10 "Temperature difference evaporator inlet-outlet"; parameter Modelica.SIunits.TemperatureDifference dTCon_nominal = 10 "Temperature difference condenser outlet-inlet"; // Efficiency parameter Boolean use_eta_Carnot = true "Set to true to use Carnot efficiency"; parameter Real etaCar(fixed=use_eta_Carnot) "Carnot effectiveness (=COP/COP_Carnot)"; parameter Real COP_nominal(fixed=not use_eta_Carnot) "Coefficient of performance"; parameter Modelica.SIunits.Temperature TCon_nominal = 303.15 "Condenser temperature"; parameter Modelica.SIunits.Temperature TEva_nominal = 278.15 "Evaporator temperature"; parameter Real a[:] = {1} "Coefficients for efficiency curve (need p(a=a, y=1)=1)"; Modelica.Blocks.Interfaces.RealInput y(min=0, max=1) "Part load ratio"; Real etaPL "Efficiency due to part load of compressor (etaPL(y=1)=1"; Real COP(min=0) "Coefficient of performance"; Real COPCar(min=0) "Carnot efficiency"; Modelica.SIunits.HeatFlowRate QCon_flow "Condenser heat input"; Modelica.SIunits.HeatFlowRate QEva_flow "Evaporator heat input"; Modelica.Blocks.Interfaces.RealOutput P(final quantity="Power", unit="W") "Electric power consumed by compressor"; Medium1.Temperature TCon "Condenser temperature used to compute efficiency"; Medium2.Temperature TEva "Evaporator temperature used to compute efficiency"; protected Buildings.HeatTransfer.Sources.PrescribedHeatFlow preHeaFloEva "Prescribed heat flow rate"; Buildings.HeatTransfer.Sources.PrescribedHeatFlow preHeaFloCon "Prescribed heat flow rate"; Modelica.Blocks.Sources.RealExpression QEva_flow_in(y=QEva_flow) "Evaporator heat flow rate"; Modelica.Blocks.Sources.RealExpression QCon_flow_in(y=QCon_flow) "Condenser heat flow rate"; Medium1.ThermodynamicState staA1 "Medium properties in port_a1"; Medium1.ThermodynamicState staB1 "Medium properties in port_b1"; Medium2.ThermodynamicState staA2 "Medium properties in port_a2"; Medium2.ThermodynamicState staB2 "Medium properties in port_b2"; initial equation assert(dTEva_nominal>0, "Parameter dTEva_nominal must be positive."); assert(dTCon_nominal>0, "Parameter dTCon_nominal must be positive."); if use_eta_Carnot then COP_nominal = etaCar * TEva_nominal/(TCon_nominal-TEva_nominal); else etaCar = COP_nominal / (TEva_nominal/(TCon_nominal-TEva_nominal)); end if; assert(abs(Buildings.Utilities.Math.Functions.polynomial( a=a, x=y)-1) < 0.01, "Efficiency curve is wrong. Need etaPL(y=1)=1."); assert(etaCar > 0.1, "Parameters lead to etaCar < 0.1. Check parameters."); assert(etaCar < 1, "Parameters lead to etaCar > 1. Check parameters."); equation if allowFlowReversal1 then if homotopyInitialization then staA1=Medium1.setState_phX(port_a1.p, homotopy(actual=actualStream(port_a1.h_outflow), simplified=inStream(port_a1.h_outflow)), homotopy(actual=actualStream(port_a1.Xi_outflow), simplified=inStream(port_a1.Xi_outflow))); staB1=Medium1.setState_phX(port_b1.p, homotopy(actual=actualStream(port_b1.h_outflow), simplified=port_b1.h_outflow), homotopy(actual=actualStream(port_b1.Xi_outflow), simplified=port_b1.Xi_outflow)); else staA1=Medium1.setState_phX(port_a1.p, actualStream(port_a1.h_outflow), actualStream(port_a1.Xi_outflow)); staB1=Medium1.setState_phX(port_b1.p, actualStream(port_b1.h_outflow), actualStream(port_b1.Xi_outflow)); end if; // homotopyInitialization else // reverse flow not allowed staA1=Medium1.setState_phX(port_a1.p, inStream(port_a1.h_outflow), inStream(port_a1.Xi_outflow)); staB1=Medium1.setState_phX(port_b1.p, inStream(port_b1.h_outflow), inStream(port_b1.Xi_outflow)); end if; if allowFlowReversal2 then if homotopyInitialization then staA2=Medium2.setState_phX(port_a2.p, homotopy(actual=actualStream(port_a2.h_outflow), simplified=inStream(port_a2.h_outflow)), homotopy(actual=actualStream(port_a2.Xi_outflow), simplified=inStream(port_a2.Xi_outflow))); staB2=Medium2.setState_phX(port_b2.p, homotopy(actual=actualStream(port_b2.h_outflow), simplified=port_b2.h_outflow), homotopy(actual=actualStream(port_b2.Xi_outflow), simplified=port_b2.Xi_outflow)); else staA2=Medium2.setState_phX(port_a2.p, actualStream(port_a2.h_outflow), actualStream(port_a2.Xi_outflow)); staB2=Medium2.setState_phX(port_b2.p, actualStream(port_b2.h_outflow), actualStream(port_b2.Xi_outflow)); end if; // homotopyInitialization else // reverse flow not allowed staA2=Medium2.setState_phX(port_a2.p, inStream(port_a2.h_outflow), inStream(port_a2.Xi_outflow)); staB2=Medium2.setState_phX(port_b2.p, inStream(port_b2.h_outflow), inStream(port_b2.Xi_outflow)); end if; // Set temperatures that will be used to compute Carnot efficiency if effInpCon == Buildings.Fluid.Types.EfficiencyInput.volume then TCon = vol1.heatPort.T; elseif effInpCon == Buildings.Fluid.Types.EfficiencyInput.port_a then TCon = Medium1.temperature(staA1); elseif effInpCon == Buildings.Fluid.Types.EfficiencyInput.port_b then TCon = Medium1.temperature(staB1); else TCon = 0.5 * (Medium1.temperature(staA1)+Medium1.temperature(staB1)); end if; if effInpEva == Buildings.Fluid.Types.EfficiencyInput.volume then TEva = vol2.heatPort.T; elseif effInpEva == Buildings.Fluid.Types.EfficiencyInput.port_a then TEva = Medium2.temperature(staA2); elseif effInpEva == Buildings.Fluid.Types.EfficiencyInput.port_b then TEva = Medium2.temperature(staB2); else TEva = 0.5 * (Medium2.temperature(staA2)+Medium2.temperature(staB2)); end if; etaPL = Buildings.Utilities.Math.Functions.polynomial(a=a, x=y); P = y * P_nominal; COPCar = TEva / Buildings.Utilities.Math.Functions.smoothMax(x1=1, x2=TCon-TEva, deltaX=0.25); COP = etaCar * COPCar * etaPL; -QEva_flow = COP * P; QCon_flow = P - QEva_flow; connect(QCon_flow_in.y, preHeaFloCon.Q_flow); connect(preHeaFloCon.port, vol1.heatPort); connect(QEva_flow_in.y, preHeaFloEva.Q_flow); connect(preHeaFloEva.port, vol2.heatPort); end Carnot;

Buildings.Fluid.Chillers.ElectricEIR Buildings.Fluid.Chillers.ElectricEIR

Electric chiller based on the DOE-2.1 model

Buildings.Fluid.Chillers.ElectricEIR

Information

Model of an electric chiller, based on the DOE-2.1 chiller model and the EnergyPlus chiller model Chiller:Electric:EIR.

This model uses three functions to predict capacity and power consumption:

These curves are stored in the data record per and are available from Buildings.Fluid.Chillers.Data.ElectricEIR. Additional performance curves can be developed using two available techniques (Hydeman and Gillespie, 2002). The first technique is called the Least-squares Linear Regression method and is used when sufficient performance data exist to employ standard least-square linear regression techniques. The second technique is called Reference Curve Method and is used when insufficient performance data exist to apply linear regression techniques. A detailed description of both techniques can be found in Hydeman and Gillespie (2002).

The model takes as an input the set point for the leaving chilled water temperature, which is met if the chiller has sufficient capacity. Thus, the model has a built-in, ideal temperature control. The model has three tests on the part load ratio and the cycling ratio:

  1. The test
      PLR1 =min(QEva_flow_set/QEva_flow_ava, per.PLRMax);
    
    ensures that the chiller capacity does not exceed the chiller capacity specified by the parameter per.PLRMax.
  2. The test
      CR = min(PLR1/per.PRLMin, 1.0);
    
    computes a cycling ratio. This ratio expresses the fraction of time that a chiller would run if it were to cycle because its load is smaller than the minimal load at which it can operate. Note that this model continuously operates even if the part load ratio is below the minimum part load ratio. Its leaving evaporator and condenser temperature can therefore be considered as an average temperature between the modes where the compressor is off and on.
  3. The test
      PLR2 = max(per.PLRMinUnl, PLR1);
    
    computes the part load ratio of the compressor. The assumption is that for a part load ratio below per.PLRMinUnl, the chiller uses hot gas bypass to reduce the capacity, while the compressor power draw does not change.

The electric power only contains the power for the compressor, but not any power for pumps or fans.

The model can be parametrized to compute a transient or steady-state response. The transient response of the boiler is computed using a first order differential equation for the evaporator and condenser fluid volumes. The chiller outlet temperatures are equal to the temperatures of these lumped volumes.

References

Extends from Buildings.Fluid.Chillers.BaseClasses.PartialElectric (Partial model for electric chiller based on the model in DOE-2, CoolTools and EnergyPlus).

Parameters

TypeNameDefaultDescription
replaceable package Medium1PartialMediumMedium 1 in the component
replaceable package Medium2PartialMediumMedium 2 in the component
Genericper Performance data
Nominal condition
MassFlowRatem1_flow_nominalmCon_flow_nominalNominal mass flow rate [kg/s]
MassFlowRatem2_flow_nominalmEva_flow_nominalNominal mass flow rate [kg/s]
Pressuredp1_nominal Pressure difference [Pa]
Pressuredp2_nominal Pressure difference [Pa]
Initialization
MassFlowRatem1_flow.start0Mass flow rate from port_a1 to port_b1 (m1_flow > 0 is design flow direction) [kg/s]
Pressuredp1.start0Pressure difference between port_a1 and port_b1 [Pa]
MassFlowRatem2_flow.start0Mass flow rate from port_a2 to port_b2 (m2_flow > 0 is design flow direction) [kg/s]
Pressuredp2.start0Pressure difference between port_a2 and port_b2 [Pa]
RealcapFunT.start1Cooling capacity factor function of temperature curve [1]
RealEIRFunT.start1Power input to cooling capacity ratio function of temperature curve [1]
RealEIRFunPLR.start1Power input to cooling capacity ratio function of part load ratio [1]
RealPLR1.start1Part load ratio [1]
RealPLR2.start1Part load ratio [1]
RealCR.start1Cycling ratio [1]
Assumptions
BooleanallowFlowReversal1true= true to allow flow reversal in medium 1, false restricts to design direction (port_a -> port_b)
BooleanallowFlowReversal2true= true to allow flow reversal in medium 2, false restricts to design direction (port_a -> port_b)
Advanced
MassFlowRatem1_flow_small1E-4*abs(m1_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
MassFlowRatem2_flow_small1E-4*abs(m2_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
BooleanhomotopyInitializationtrue= true, use homotopy method
Diagnostics
Booleanshow_Tfalse= true, if actual temperature at port is computed
Flow resistance
Medium 1
Booleanfrom_dp1false= true, use m_flow = f(dp) else dp = f(m_flow)
BooleanlinearizeFlowResistance1false= true, use linear relation between m_flow and dp for any flow rate
RealdeltaM10.1Fraction of nominal flow rate where flow transitions to laminar
Medium 2
Booleanfrom_dp2false= true, use m_flow = f(dp) else dp = f(m_flow)
BooleanlinearizeFlowResistance2false= true, use linear relation between m_flow and dp for any flow rate
RealdeltaM20.1Fraction of nominal flow rate where flow transitions to laminar
Dynamics
Nominal condition
Timetau130Time constant at nominal flow [s]
Timetau230Time constant at nominal flow [s]
Equations
DynamicsenergyDynamicsModelica.Fluid.Types.Dynamic...Formulation of energy balance
DynamicsmassDynamicsenergyDynamicsFormulation of mass balance
Initialization
Medium 1
AbsolutePressurep1_startMedium1.p_defaultStart value of pressure [Pa]
TemperatureT1_start273.15 + 25Start value of temperature [K]
MassFractionX1_start[Medium1.nX]Medium1.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC1_start[Medium1.nC]fill(0, Medium1.nC)Start value of trace substances
ExtraPropertyC1_nominal[Medium1.nC]fill(1E-2, Medium1.nC)Nominal value of trace substances. (Set to typical order of magnitude.)
Medium 2
AbsolutePressurep2_startMedium2.p_defaultStart value of pressure [Pa]
TemperatureT2_start273.15 + 5Start value of temperature [K]
MassFractionX2_start[Medium2.nX]Medium2.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC2_start[Medium2.nC]fill(0, Medium2.nC)Start value of trace substances
ExtraPropertyC2_nominal[Medium2.nC]fill(1E-2, Medium2.nC)Nominal value of trace substances. (Set to typical order of magnitude.)

Connectors

TypeNameDescription
FluidPort_aport_a1Fluid connector a1 (positive design flow direction is from port_a1 to port_b1)
FluidPort_bport_b1Fluid connector b1 (positive design flow direction is from port_a1 to port_b1)
FluidPort_aport_a2Fluid connector a2 (positive design flow direction is from port_a2 to port_b2)
FluidPort_bport_b2Fluid connector b2 (positive design flow direction is from port_a2 to port_b2)
input BooleanInputonSet to true to enable compressor, or false to disable compressor
input RealInputTSetSet point for leaving chilled water temperature [K]
output RealOutputPElectric power consumed by compressor [W]

Modelica definition

model ElectricEIR "Electric chiller based on the DOE-2.1 model" extends Buildings.Fluid.Chillers.BaseClasses.PartialElectric( final QEva_flow_nominal = per.QEva_flow_nominal, final COP_nominal= per.COP_nominal, final PLRMax= per.PLRMax, final PLRMinUnl= per.PLRMinUnl, final PLRMin= per.PLRMin, final etaMotor= per.etaMotor, final mEva_flow_nominal= per.mEva_flow_nominal, final mCon_flow_nominal= per.mCon_flow_nominal, final TEvaLvg_nominal= per.TEvaLvg_nominal); parameter Buildings.Fluid.Chillers.Data.ElectricEIR.Generic per "Performance data"; protected final parameter Modelica.SIunits.Conversions.NonSIunits.Temperature_degC TConEnt_nominal_degC= Modelica.SIunits.Conversions.to_degC(per.TConEnt_nominal) "Temperature of fluid entering condenser at nominal condition"; Modelica.SIunits.Conversions.NonSIunits.Temperature_degC TConEnt_degC "Temperature of fluid entering condenser"; initial equation // Verify correctness of performance curves, and write warning if error is bigger than 10% Buildings.Fluid.Chillers.BaseClasses.warnIfPerformanceOutOfBounds( Buildings.Utilities.Math.Functions.biquadratic(a=per.capFunT, x1=TEvaLvg_nominal_degC, x2=TConEnt_nominal_degC), "Capacity as function of temperature ", "per.capFunT"); equation TConEnt_degC=Modelica.SIunits.Conversions.to_degC(TConEnt); if on then // Compute the chiller capacity fraction, using a biquadratic curve. // Since the regression for capacity can have negative values (for unreasonable temperatures), // we constrain its return value to be non-negative. This prevents the solver to pick the // unrealistic solution. capFunT = Buildings.Utilities.Math.Functions.smoothMax( x1= 1E-6, x2= Buildings.Utilities.Math.Functions.biquadratic(a=per.capFunT, x1=TEvaLvg_degC, x2=TConEnt_degC), deltaX= 1E-7); /* assert(capFunT > 0.1, "Error: Received capFunT = " + String(capFunT) + ".\n" + "Coefficient for polynomial seem to be not valid for the encountered temperature range.\n" + "Temperatures are TConEnt_degC = " + String(TConEnt_degC) + " degC\n" + " TEvaLvg_degC = " + String(TEvaLvg_degC) + " degC"); */ // Chiller energy input ratio biquadratic curve. EIRFunT = Buildings.Utilities.Math.Functions.biquadratic(a=per.EIRFunT, x1=TEvaLvg_degC, x2=TConEnt_degC); // Chiller energy input ratio quadratic curve EIRFunPLR = per.EIRFunPLR[1]+per.EIRFunPLR[2]*PLR2+per.EIRFunPLR[3]*PLR2^2; else capFunT = 0; EIRFunT = 0; EIRFunPLR = 0; end if; end ElectricEIR;

Buildings.Fluid.Chillers.ElectricReformulatedEIR Buildings.Fluid.Chillers.ElectricReformulatedEIR

Electric chiller based on the DOE-2.1 model, but with performance as a function of condenser leaving instead of entering temperature

Buildings.Fluid.Chillers.ElectricReformulatedEIR

Information

Model of an electric chiller, based on the model by Hydeman et al. (2002) that has been developed in the CoolTools project and that is implemented in EnergyPlus as the model Chiller:Electric:ReformulatedEIR. This empirical model is similar to Buildings.Fluid.Chillers.ElectricEIR. The difference is that to compute the performance, this model uses the condenser leaving temperature instead of the entering temperature, and it uses a bicubic polynomial to compute the part load performance.

This model uses three functions to predict capacity and power consumption:

These curves are stored in the data record per and are available from Buildings.Fluid.Chillers.Data.ElectricReformulatedEIRChiller. Additional performance curves can be developed using two available techniques (Hydeman and Gillespie, 2002). The first technique is called the Least-squares Linear Regression method and is used when sufficient performance data exist to employ standard least-square linear regression techniques. The second technique is called Reference Curve Method and is used when insufficient performance data exist to apply linear regression techniques. A detailed description of both techniques can be found in Hydeman and Gillespie (2002).

The model takes as an input the set point for the leaving chilled water temperature, which is met if the chiller has sufficient capacity. Thus, the model has a built-in, ideal temperature control. The model has three tests on the part load ratio and the cycling ratio:

  1. The test
      PLR1 =min(QEva_flow_set/QEva_flow_ava, per.PLRMax);
    
    ensures that the chiller capacity does not exceed the chiller capacity specified by the parameter per.PLRMax.
  2. The test
      CR = min(PLR1/per.PRLMin, 1.0);
    
    computes a cycling ratio. This ratio expresses the fraction of time that a chiller would run if it were to cycle because its load is smaller than the minimal load at which it can operate. Note that this model continuously operates even if the part load ratio is below the minimum part load ratio. Its leaving evaporator and condenser temperature can therefore be considered as an average temperature between the modes where the compressor is off and on.
  3. The test
      PLR2 = max(per.PLRMinUnl, PLR1);
    
    computes the part load ratio of the compressor. The assumption is that for a part load ratio below per.PLRMinUnl, the chiller uses hot gas bypass to reduce the capacity, while the compressor power draw does not change.

The electric power only contains the power for the compressor, but not any power for pumps or fans.

The model can be parametrized to compute a transient or steady-state response. The transient response of the boiler is computed using a first order differential equation for the evaporator and condenser fluid volumes. The chiller outlet temperatures are equal to the temperatures of these lumped volumes.

References

Extends from Buildings.Fluid.Chillers.BaseClasses.PartialElectric (Partial model for electric chiller based on the model in DOE-2, CoolTools and EnergyPlus).

Parameters

TypeNameDefaultDescription
replaceable package Medium1PartialMediumMedium 1 in the component
replaceable package Medium2PartialMediumMedium 2 in the component
Genericper Performance data
Nominal condition
MassFlowRatem1_flow_nominalmCon_flow_nominalNominal mass flow rate [kg/s]
MassFlowRatem2_flow_nominalmEva_flow_nominalNominal mass flow rate [kg/s]
Pressuredp1_nominal Pressure difference [Pa]
Pressuredp2_nominal Pressure difference [Pa]
Initialization
MassFlowRatem1_flow.start0Mass flow rate from port_a1 to port_b1 (m1_flow > 0 is design flow direction) [kg/s]
Pressuredp1.start0Pressure difference between port_a1 and port_b1 [Pa]
MassFlowRatem2_flow.start0Mass flow rate from port_a2 to port_b2 (m2_flow > 0 is design flow direction) [kg/s]
Pressuredp2.start0Pressure difference between port_a2 and port_b2 [Pa]
RealcapFunT.start1Cooling capacity factor function of temperature curve [1]
RealEIRFunT.start1Power input to cooling capacity ratio function of temperature curve [1]
RealEIRFunPLR.start1Power input to cooling capacity ratio function of part load ratio [1]
RealPLR1.start1Part load ratio [1]
RealPLR2.start1Part load ratio [1]
RealCR.start1Cycling ratio [1]
Assumptions
BooleanallowFlowReversal1true= true to allow flow reversal in medium 1, false restricts to design direction (port_a -> port_b)
BooleanallowFlowReversal2true= true to allow flow reversal in medium 2, false restricts to design direction (port_a -> port_b)
Advanced
MassFlowRatem1_flow_small1E-4*abs(m1_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
MassFlowRatem2_flow_small1E-4*abs(m2_flow_nominal)Small mass flow rate for regularization of zero flow [kg/s]
BooleanhomotopyInitializationtrue= true, use homotopy method
Diagnostics
Booleanshow_Tfalse= true, if actual temperature at port is computed
Flow resistance
Medium 1
Booleanfrom_dp1false= true, use m_flow = f(dp) else dp = f(m_flow)
BooleanlinearizeFlowResistance1false= true, use linear relation between m_flow and dp for any flow rate
RealdeltaM10.1Fraction of nominal flow rate where flow transitions to laminar
Medium 2
Booleanfrom_dp2false= true, use m_flow = f(dp) else dp = f(m_flow)
BooleanlinearizeFlowResistance2false= true, use linear relation between m_flow and dp for any flow rate
RealdeltaM20.1Fraction of nominal flow rate where flow transitions to laminar
Dynamics
Nominal condition
Timetau130Time constant at nominal flow [s]
Timetau230Time constant at nominal flow [s]
Equations
DynamicsenergyDynamicsModelica.Fluid.Types.Dynamic...Formulation of energy balance
DynamicsmassDynamicsenergyDynamicsFormulation of mass balance
Initialization
Medium 1
AbsolutePressurep1_startMedium1.p_defaultStart value of pressure [Pa]
TemperatureT1_start273.15 + 25Start value of temperature [K]
MassFractionX1_start[Medium1.nX]Medium1.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC1_start[Medium1.nC]fill(0, Medium1.nC)Start value of trace substances
ExtraPropertyC1_nominal[Medium1.nC]fill(1E-2, Medium1.nC)Nominal value of trace substances. (Set to typical order of magnitude.)
Medium 2
AbsolutePressurep2_startMedium2.p_defaultStart value of pressure [Pa]
TemperatureT2_start273.15 + 5Start value of temperature [K]
MassFractionX2_start[Medium2.nX]Medium2.X_defaultStart value of mass fractions m_i/m [kg/kg]
ExtraPropertyC2_start[Medium2.nC]fill(0, Medium2.nC)Start value of trace substances
ExtraPropertyC2_nominal[Medium2.nC]fill(1E-2, Medium2.nC)Nominal value of trace substances. (Set to typical order of magnitude.)

Connectors

TypeNameDescription
FluidPort_aport_a1Fluid connector a1 (positive design flow direction is from port_a1 to port_b1)
FluidPort_bport_b1Fluid connector b1 (positive design flow direction is from port_a1 to port_b1)
FluidPort_aport_a2Fluid connector a2 (positive design flow direction is from port_a2 to port_b2)
FluidPort_bport_b2Fluid connector b2 (positive design flow direction is from port_a2 to port_b2)
input BooleanInputonSet to true to enable compressor, or false to disable compressor
input RealInputTSetSet point for leaving chilled water temperature [K]
output RealOutputPElectric power consumed by compressor [W]

Modelica definition

model ElectricReformulatedEIR "Electric chiller based on the DOE-2.1 model, but with performance as a function of condenser leaving instead of entering temperature" extends Buildings.Fluid.Chillers.BaseClasses.PartialElectric( final QEva_flow_nominal = per.QEva_flow_nominal, final COP_nominal= per.COP_nominal, final PLRMax= per.PLRMax, final PLRMinUnl= per.PLRMinUnl, final PLRMin= per.PLRMin, final etaMotor= per.etaMotor, final mEva_flow_nominal= per.mEva_flow_nominal, final mCon_flow_nominal= per.mCon_flow_nominal, final TEvaLvg_nominal= per.TEvaLvg_nominal); parameter Buildings.Fluid.Chillers.Data.ElectricReformulatedEIR.Generic per "Performance data"; protected final parameter Modelica.SIunits.Conversions.NonSIunits.Temperature_degC TConLvg_nominal_degC= Modelica.SIunits.Conversions.to_degC(per.TConLvg_nominal) "Temperature of fluid leaving condenser at nominal condition"; Modelica.SIunits.Conversions.NonSIunits.Temperature_degC TConLvg_degC "Temperature of fluid leaving condenser"; initial equation // Verify correctness of performance curves, and write warning if error is bigger than 10% Buildings.Fluid.Chillers.BaseClasses.warnIfPerformanceOutOfBounds( Buildings.Utilities.Math.Functions.biquadratic(a=per.capFunT, x1=TEvaLvg_nominal_degC, x2=TConLvg_nominal_degC), "Capacity as a function of temperature ", "per.capFunT"); equation TConLvg_degC=Modelica.SIunits.Conversions.to_degC(TConLvg); if on then // Compute the chiller capacity fraction, using a biquadratic curve. // Since the regression for capacity can have negative values (for unreasonable temperatures), // we constrain its return value to be non-negative. This prevents the solver to pick the // unrealistic solution. capFunT = Buildings.Utilities.Math.Functions.smoothMax( x1= 1E-6, x2= Buildings.Utilities.Math.Functions.biquadratic(a=per.capFunT, x1=TEvaLvg_degC, x2=TConLvg_degC), deltaX= 1E-7); /* assert(capFunT > 0.1, "Error: Received capFunT = " + String(capFunT) + ".\n" + "Coefficient for polynomial seem to be not valid for the encountered temperature range.\n" + "Temperatures are TConLvg_degC = " + String(TConLvg_degC) + " degC\n" + " TEvaLvg_degC = " + String(TEvaLvg_degC) + " degC"); */ // Chiller energy input ratio biquadratic curve. EIRFunT = Buildings.Utilities.Math.Functions.biquadratic(a=per.EIRFunT, x1=TEvaLvg_degC, x2=TConLvg_degC); // Chiller energy input ratio bicubic curve EIRFunPLR = Buildings.Utilities.Math.Functions.bicubic(a=per.EIRFunPLR, x1=TConLvg_degC, x2=PLR2); else capFunT = 0; EIRFunT = 0; EIRFunPLR = 0; end if; end ElectricReformulatedEIR;

Automatically generated Mon Jul 13 14:23:58 2015.