Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer

Package with ground heat transfer models

Information

This package contains models and functions to solve ground heat transfer around ground heat exchangers. For more information on the model implementation, see the documentation of Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.GroundTemperatureResponse.

Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).

Package Content

Name Description
Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.GroundTemperatureResponse GroundTemperatureResponse Model calculating discrete load aggregation
Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shaKappa shaKappa Returns a SHA1 encryption of the formatted arguments for the thermal response factor generation
Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shiftAggregationCells shiftAggregationCells Performs the shifting operation for load aggregation and determines the current cell
Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temperatureResponseMatrix temperatureResponseMatrix Evaluate the thermal response factors of a zoned thermal storage
Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temporalSuperposition temporalSuperposition Performs temporal superposition for the load aggregation procedure
Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.Validation Validation Validation models for the geothermal heat transfer models

Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.GroundTemperatureResponse Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.GroundTemperatureResponse

Model calculating discrete load aggregation

Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.GroundTemperatureResponse

Information

This model calculates the ground temperature response to obtain the temperature at the wall of each borehole segment in a geothermal system where heat is being injected into or extracted from the ground.

A load-aggregation scheme based on that developed by Claesson and Javed (2012) is used to calculate the borehole wall temperature response with the temporal and spatial superpositions of ground thermal loads. In its base form, the load-aggregation scheme uses fixed-length aggregation cells to agglomerate thermal load history together, with more distant cells (denoted with a higher cell and vector index) representing more distant thermal history. The more distant the thermal load, the less impactful it is on the borehole wall temperature change at the current time step. Each cell has an aggregation time associated to it denoted by nu, which corresponds to the simulation time (since the beginning of heat injection or extraction) at which the cell will begin shifting its thermal load to more distant cells. To determine nu, cells have a temporal size rcel (rcel in this model) which follows the exponential growth :

image

where nCel is the number of consecutive cells which can have the same size. Decreasing rcel will generally decrease calculation times, at the cost of precision in the temporal superposition. rcel is expressed in multiples of the aggregation time resolution (via the parameter tLoaAgg). Then, nu may be expressed as the sum of all rcel values (multiplied by the aggregation time resolution) up to and including that cell in question.

The weighting factors giving the impact of the thermal load in a cell m) for a segment v of borehole J onto the temperature at the wall of segment u of a borehole I at the current time is obtained from analytical thermal response factors:

image

where hIJ,uv is the thermal response factor of segment v of borehole J onto segment u of a borehole I, ks is the thermal conductivity of the soil and ν refers to the vector nu in this model.

At every aggregation time step, a time event is generated to perform the load aggregation steps. First, the thermal loads are shifted. When shifting between cells of different size, total energy is conserved. This operation is illustred in the figure below by Cimmino (2014).

image

After the cell-shifting operation is performed, the first aggregation cell has its value set to the average thermal load since the last aggregation step. Temporal superposition is then applied by means of a scalar product between the aggregated thermal loads QAgg_flow and the weighting factors κ. The spatial superposition is applied by summing the contributions of all segments on the total temperature variation.

Due to Modelica's variable time steps, the load aggregation scheme is modified by separating the thermal response between the current aggregation time step and everything preceding it. This is done according to :

image

where Tb,I,u is the borehole wall temperature at segment u of borehole I, Q'b,J,v is the ground thermal load per borehole length at segment v of borehole J. tk is the last discrete aggregation time step, meaning that the current time t satisfies tk≤t≤tk+1. Δtagg(=tk+1-tk) is the parameter tLoaAgg in the present model.

Thermal interactions between segments affect the borehole wall temperature much slower than the effect of heat extraction at a segment on the temperature variation at the same segment. Thus, spatial superposition in the second sum can be neglected :

image
image

where ΔTb,I,u*(t) is the borehole wall temperature change at segment u of borehole I due to the thermal history prior to the current aggregation step. At every aggregation time step, spatial and temporal superpositions are used to calculate its discrete value. Assuming no heat injection or extraction until tk+1, this term is assumed to have a linear time derivative, which is given by the difference between ΔTb,I,u*(tk+1) (the temperature change from load history at the next discrete aggregation time step, which is constant over the duration of the ongoing aggregation time step) and the total temperature change at the last aggregation time step, ΔTb,I,u(tk).

image

The second term ΔTb,q,I,u(t) concerns the ongoing aggregation time step. To obtain the time derivative of this term, the thermal response factor hII,uu is assumed to vary linearly over the course of an aggregation time step. Therefore, because the ongoing aggregation time step always concerns the first aggregation cell, its derivative can be calculated as kappa[i,i,1], the first value in the kappa array, divided by the aggregation time step Δt. The derivative of the temperature change at the borehole wall is then expressed by its multiplication with the heat flow QI,u at the borehole wall.

image

image

With the two terms in the expression of ΔTb,I,u(t) expressed as time derivatives, ΔTb,I,u(t) can itself also be expressed as its time derivative and implemented as such directly in the Modelica equations block with the der() operator.

image

References

Cimmino, M. 2014. Développement et validation expérimentale de facteurs de réponse thermique pour champs de puits géothermiques, Ph.D. Thesis, École Polytechnique de Montréal.

Claesson, J. and Javed, S. 2012. A load-aggregation method to calculate extraction temperatures of borehole heat exchangers. ASHRAE Transactions 118(1): 530-539.

Parameters

TypeNameDefaultDescription
TimetLoaAgg3600Time resolution of load aggregation [s]
IntegernCel5Number of cells per aggregation level
IntegernSeg Number of segments per borehole
TemplateborFieDat Record containing all the parameters of the borefield model

Connectors

TypeNameDescription
output RealOutputdelTBor[nZon, nSeg]Temperature difference current borehole wall temperature minus initial borehole wall temperature [K]
input RealInputQBor_flow[nZon, nSeg]Heat flow from borehole segment (positive if heat from fluid into soil) [W]

Modelica definition

model GroundTemperatureResponse "Model calculating discrete load aggregation" parameter Modelica.Units.SI.Time tLoaAgg(final min=Modelica.Constants.eps)= 3600 "Time resolution of load aggregation"; parameter Integer nCel(min=1)=5 "Number of cells per aggregation level"; parameter Integer nSeg(min=1) "Number of segments per borehole"; parameter Buildings.Fluid.Geothermal.ZonedBorefields.Data.Borefield.Template borFieDat "Record containing all the parameters of the borefield model"; // Model inputs and outputs Modelica.Blocks.Interfaces.RealOutput[nZon, nSeg] delTBor( each final unit="K", each displayUnit="degC") "Temperature difference current borehole wall temperature minus initial borehole wall temperature"; Modelica.Blocks.Interfaces.RealInput[nZon, nSeg] QBor_flow(each final unit="W") "Heat flow from borehole segment (positive if heat from fluid into soil)"; protected constant Real lvlBas = 2 "Base for exponential cell growth between levels"; constant Real ttsMax = exp(5) "Maximum non-dimensional time for g-function calculation"; // Adjust the timFin parameter for simulation that span more than 50 years constant Modelica.Units.SI.Time timFin=50.*8760.*3600. "Final time for g-function calculation"; constant Real relTol = 0.02 "Relative tolerance on distance between boreholes"; parameter String sha= Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shaKappa( nBor=borFieDat.conDat.nBor, cooBor=borFieDat.conDat.cooBor, hBor=borFieDat.conDat.hBor, dBor=borFieDat.conDat.dBor, rBor=borFieDat.conDat.rBor, aSoi=borFieDat.soiDat.aSoi, kSoi=borFieDat.soiDat.kSoi, nSeg=nSeg, nZon=borFieDat.conDat.nZon, iZon=borFieDat.conDat.iZon, nBorPerZon=borFieDat.conDat.nBorPerZon, nu=nu, nTim=i, relTol=relTol) "String with encrypted thermal response factor arguments"; final parameter Integer nSegTot = nZon * nSeg "Total number of segments"; final parameter Integer nZon(min=1) = borFieDat.conDat.nZon "Total number of independent borefield zones"; final parameter Integer i(min=1)= Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.LoadAggregation.countAggregationCells( lvlBas=lvlBas, nCel=nCel, timFin=timFin, tLoaAgg=tLoaAgg) "Number of aggregation cells"; final parameter Modelica.Units.SI.Time[i] nu = Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.LoadAggregation.aggregationCellTimes( i=i, lvlBas=lvlBas, nCel=nCel, tLoaAgg=tLoaAgg, timFin=timFin) "Time vector for load aggregation"; final parameter Modelica.Units.SI.Time t_start(fixed=false) "Simulation start time"; final parameter Real[nSegTot,nSegTot,i] kappa = Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temperatureResponseMatrix( nBor=borFieDat.conDat.nBor, cooBor=borFieDat.conDat.cooBor, hBor=borFieDat.conDat.hBor, dBor=borFieDat.conDat.dBor, rBor=borFieDat.conDat.rBor, aSoi=borFieDat.soiDat.aSoi, kSoi=borFieDat.soiDat.kSoi, nSeg=nSeg, nZon=borFieDat.conDat.nZon, iZon=borFieDat.conDat.iZon, nBorPerZon=borFieDat.conDat.nBorPerZon, nu=nu, nTim=i, relTol=relTol, sha=sha) "Weight factor for each aggregation cell"; final parameter Real[i] rCel(each fixed=false) "Cell widths"; discrete Modelica.Units.SI.HeatFlowRate[nSegTot,i] QAgg_flow "Vector of aggregated loads"; discrete Modelica.Units.SI.HeatFlowRate[nSegTot,i] QAggShi_flow "Shifted vector of aggregated loads"; Modelica.Units.SI.HeatFlowRate[nSegTot] QBor_flow_1d "Flattened array of heat flows (QBor_flow)"; Modelica.Units.SI.TemperatureDifference[nSegTot] delTBor_1d "Flattened array of temperature differences (delTBor)"; discrete Integer curCel "Current occupied cell"; discrete Modelica.Units.SI.TemperatureDifference[nSegTot] delTBor0 "Previous time step's temperature difference current borehole wall temperature minus initial borehole temperature"; discrete Real[nSegTot] derDelTBor0(each unit="K/s") "Derivative of wall temperature change from previous time steps"; final parameter Real[nSegTot] dTStepdt = {kappa[i,i,1]/tLoaAgg for i in 1:nSegTot} "Time derivative of h_ii/(2*pi*H*Nb*ks) within most recent cell"; Modelica.Units.SI.Heat[nSegTot,1] U "Accumulated heat flow from all segments"; discrete Modelica.Units.SI.Heat[nSegTot,1] U_old "Accumulated heat flow from all segments at last aggregation step"; initial equation QAgg_flow = zeros(nSegTot,i); curCel = 1; delTBor_1d = zeros(nSegTot); QAggShi_flow = QAgg_flow; delTBor0 = zeros(nSegTot); U = zeros(nSegTot,1); U_old = zeros(nSegTot,1); derDelTBor0 = zeros(nSegTot); (,rCel) = Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.LoadAggregation.aggregationCellTimes( i=i, lvlBas=lvlBas, nCel=nCel, tLoaAgg=tLoaAgg, timFin=timFin); t_start = time; equation assert( time - t_start < timFin, "The simulation is longer than the calculated thermal response factors. Adjust the constant `timFin` in Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.GroundTemperatureResponse."); der(delTBor_1d) = dTStepdt .* QBor_flow_1d + derDelTBor0; der(U[:,1]) = QBor_flow_1d; for i in 1:nZon loop for j in 1:nSeg loop delTBor[i,j] = delTBor_1d[(i-1)* nSeg + j]; QBor_flow[i,j] = QBor_flow_1d[(i-1)* nSeg + j]; end for; end for; when sample(t_start, tLoaAgg) then // Assign average load since last aggregation step to the first cell of the // aggregation vector U_old = U; // Store (U - pre(U_old))/tLoaAgg in QAgg_flow[1], and pre(QAggShi_flow) in the other elements QAgg_flow = cat(2, (U - pre(U_old))/tLoaAgg, pre(QAggShi_flow[:,2:end])); // Shift loads in aggregation cells (curCel,QAggShi_flow) = Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shiftAggregationCells( i=i, nSeg=nSegTot, QAgg_flow=QAgg_flow, rCel=rCel, nu=nu, curTim=(time - t_start)); // Determine the temperature change at the next aggregation step (assuming // no loads until then) delTBor0 = Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temporalSuperposition( i=i, nSeg=nSegTot, QAgg_flow=QAggShi_flow, kappa=kappa, curCel=curCel); derDelTBor0 = (delTBor0 - delTBor_1d) / tLoaAgg; end when; end GroundTemperatureResponse;

Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shaKappa Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shaKappa

Returns a SHA1 encryption of the formatted arguments for the thermal response factor generation

Information

This function returns the SHA1 encryption of its arguments.

Implementation

Each argument is formatted in exponential notation with four significant digits, for example 1.234e+001, with no spaces or other separating characters between each argument value. To prevent too long strings that can cause buffer overflows, the sha encoding of each argument is computed and added to the next string that is parsed.

The SHA1 encryption is computed using Buildings.Utilities.Cryptographics.sha.

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

TypeNameDefaultDescription
IntegernBor Number of boreholes
PositioncooBor[nBor, 2] Coordinates of boreholes [m]
HeighthBor Borehole length [m]
HeightdBor Borehole buried depth [m]
RadiusrBor Borehole radius [m]
ThermalDiffusivityaSoi Ground thermal diffusivity used in g-function evaluation [m2/s]
ThermalConductivitykSoi Thermal conductivity of soil [W/(m.K)]
IntegernSeg Number of line source segments per borehole
IntegernZon Total number of independent bore field zones
IntegeriZon[nBor] Index of the zone corresponding to each borehole
IntegernBorPerZon[nZon] Number of boreholes per borefield zone
Timenu[nTim] Time vector for the calculation of thermal response factors [s]
IntegernTim Length of the time vector
RealrelTol Relative tolerance on distance between boreholes

Outputs

TypeNameDescription
StringshaSHA1 encryption of the g-function arguments

Modelica definition

function shaKappa "Returns a SHA1 encryption of the formatted arguments for the thermal response factor generation" extends Modelica.Icons.Function; input Integer nBor "Number of boreholes"; input Modelica.Units.SI.Position cooBor[nBor,2] "Coordinates of boreholes"; input Modelica.Units.SI.Height hBor "Borehole length"; input Modelica.Units.SI.Height dBor "Borehole buried depth"; input Modelica.Units.SI.Radius rBor "Borehole radius"; input Modelica.Units.SI.ThermalDiffusivity aSoi "Ground thermal diffusivity used in g-function evaluation"; input Modelica.Units.SI.ThermalConductivity kSoi "Thermal conductivity of soil"; input Integer nSeg "Number of line source segments per borehole"; input Integer nZon "Total number of independent bore field zones"; input Integer[nBor] iZon "Index of the zone corresponding to each borehole"; input Integer[nZon] nBorPerZon "Number of boreholes per borefield zone"; input Modelica.Units.SI.Time nu[nTim] "Time vector for the calculation of thermal response factors"; input Integer nTim "Length of the time vector"; input Real relTol "Relative tolerance on distance between boreholes"; output String sha "SHA1 encryption of the g-function arguments"; protected constant String formatStrGen = "1.3e" "String format for general parameters"; constant String formatStrCoo = ".2f" "String format for coordinate"; algorithm sha := Buildings.Utilities.Cryptographics.sha(String(nBor, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(hBor, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(dBor, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(rBor, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(aSoi, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(kSoi, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(nSeg, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(nZon, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(nTim, format=formatStrGen)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(relTol, format=formatStrGen)); for i in 1:nBor loop sha := Buildings.Utilities.Cryptographics.sha(sha + String(cooBor[i, 1], format=formatStrCoo)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(cooBor[i, 2], format=formatStrCoo)); sha := Buildings.Utilities.Cryptographics.sha(sha + String(iZon[i], format=formatStrGen)); end for; for i in 1:nZon loop sha := Buildings.Utilities.Cryptographics.sha(sha + String(nBorPerZon[i], format=formatStrGen)); end for; for i in 1:nTim loop sha := Buildings.Utilities.Cryptographics.sha(sha + String(nu[i], format=formatStrGen)); end for; end shaKappa;

Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shiftAggregationCells Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.shiftAggregationCells

Performs the shifting operation for load aggregation and determines the current cell

Information

Performs the shifting operation which propagates the thermal load history towards the more distant aggregation cells, and then sets the current cell's value at 0. Additionally, this function also outputs the last filled load aggregation cell.

This is a vectorized implementation of Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.LoadAggregation.shiftAggregationCells, which applies load aggregation on a vector of aggregated load histories.

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

TypeNameDefaultDescription
Integeri Number of aggregation cells
IntegernSeg Number of segments
HeatFlowRateQAgg_flow[nSeg, i] Vector of aggregated loads [W]
RealrCel[i] Aggregation cell widths
Timenu[i] Cell aggregation times [s]
TimecurTim Current simulation time [s]

Outputs

TypeNameDescription
IntegercurCelCurrent occupied aggregation cell
HeatFlowRateQAggShi_flow[nSeg, i]Shifted vector of aggregated loads [W]

Modelica definition

function shiftAggregationCells "Performs the shifting operation for load aggregation and determines the current cell" extends Modelica.Icons.Function; input Integer i "Number of aggregation cells"; input Integer nSeg "Number of segments"; input Modelica.Units.SI.HeatFlowRate QAgg_flow[nSeg,i] "Vector of aggregated loads"; input Real rCel[i](each min=Modelica.Constants.small) "Aggregation cell widths"; input Modelica.Units.SI.Time nu[i] "Cell aggregation times"; input Modelica.Units.SI.Time curTim "Current simulation time"; output Integer curCel "Current occupied aggregation cell"; output Modelica.Units.SI.HeatFlowRate QAggShi_flow[nSeg,i] "Shifted vector of aggregated loads"; algorithm curCel := 1; for j in (i-1):-1:1 loop if curTim>=nu[j+1] then QAggShi_flow[:,j+1] := ((rCel[j+1] - 1)*QAgg_flow[:,j+1] + QAgg_flow[:,j])/rCel[j+1]; if j==(i-1) then curCel := i; end if; elseif curTim>=nu[j] then QAggShi_flow[:,j+1] := (rCel[j+1]*QAgg_flow[:,j+1] + QAgg_flow[:,j])/rCel[j+1]; curCel := j+1; else QAggShi_flow[:,j+1] := QAgg_flow[:,j+1]; end if; end for; QAggShi_flow[:,1] := zeros(nSeg); end shiftAggregationCells;

Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temperatureResponseMatrix Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temperatureResponseMatrix

Evaluate the thermal response factors of a zoned thermal storage

Information

This function evaluates the array of segment-to-segment thermal response factors using the analytical finite line source method of and Prieto and Cimmino (2021). The finite line source solution gives the relation between heat extraction at a segment of an equivalent borehole representing a group of boreholes (or in this model, a borefield zone) and the temperature variation at the wall of another segment of another (or the same) equivalent borehole representing another group of boreholes. The total temperature varition at a borehole segment is given by the temporal and spatial superpositions of the thermal reponse factors:

image

where Tb,I,u is the borehole wall temperature of segment u of borehole I, Tg,I,u is the undisturbed ground temperature of segment u of borehole I, Q'J,v is the heat injection rate into the ground through the borehole wall per unit length of segment v of borehole J, ks is the soil thermal conductivity and hIJ,uv is the thermal response factor of segment v of borehole J onto segment u of borehole I.

The thermal response factor is constructed from the combination of the finite line source (FLS) solution (see Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.ThermalResponseFactors.finiteLineSource_Equivalent), the cylindrical heat source (CHS) solution (see Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.ThermalResponseFactors.cylindricalHeatSource), and the infinite line source (ILS) solution (see Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.ThermalResponseFactors.infiniteLineSource). To obtain the thermal response factors of a bore field, the bore field is first divided into nZon zones of parallel-connected boreholes. Each sone is represented by a single equivalent borehole. Each equivalent borehole is then divided into a series of nSeg segments of equal length, each modeled as a line source of finite length. The finite line source solution is superimposed in space to obtain a system of equations that gives the relation between the heat injection rate at each of the segments and the borehole wall temperature at each of the segments.

Since the finite line source solution is based on line sources of heat, rather than cylinders, the thermal response factors are corrected to consider the cylindrical geometry. The correction factor is then the difference between the cylindrical heat source solution and the infinite line source solution, as proposed by Li et al. (2014) :

image

Implementation

The calculation of the g-function is separated into two regions: the short-time region and the long-time region. In the short-time region, corresponding to times t < 1 hour, heat interaction between boreholes and axial variations of heat injection rate are not considered. The g-function is calculated using only one borehole and one segment. In the long-time region, corresponding to times t > 1 hour, all boreholes are represented as series of nSeg line segments and the g-function is evaluated as described above.

References

Li, M., Li, P., Chan, V. and Lai, A.C.K. 2014. Full-scale temperature response function (G-function) for heat transfer by borehole heat exchangers (GHEs) from sub-hour to decades. Applied Energy 136: 197-205.

Prieto, C. and Cimmino, M. 2021. Thermal interactions in large irregular fields of geothermal boreholes: the method of equivalent boreholes. Journal of Building Performance Simulation 14(4): 446-460. doi:10.1080/19401493.2021.1968953.

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

TypeNameDefaultDescription
IntegernBor Number of boreholes
PositioncooBor[nBor, 2] Coordinates of boreholes [m]
HeighthBor Borehole length [m]
HeightdBor Borehole buried depth [m]
RadiusrBor Borehole radius [m]
ThermalDiffusivityaSoi Ground thermal diffusivity used in g-function evaluation [m2/s]
ThermalConductivitykSoi Thermal conductivity of soil [W/(m.K)]
IntegernSeg Number of line source segments per borehole
IntegernZon Total number of independent bore field zones
IntegeriZon[nBor] Index of the zone corresponding to each borehole
IntegernBorPerZon[nZon] Number of boreholes per borefield zone
Timenu[nTim] Time vector for the calculation of thermal response factors [s]
IntegernTim Length of the time vector
RealrelTol0.02Relative tolerance on distance between boreholes
Stringsha SHA-1 encryption of the arguments of this function

Outputs

TypeNameDescription
ThermalResistancekappa[nZon*nSeg, nZon*nSeg, nTim]Thermal response factor matrix [K/W]

Modelica definition

impure function temperatureResponseMatrix "Evaluate the thermal response factors of a zoned thermal storage" extends Modelica.Icons.Function; input Integer nBor "Number of boreholes"; input Modelica.Units.SI.Position cooBor[nBor,2] "Coordinates of boreholes"; input Modelica.Units.SI.Height hBor "Borehole length"; input Modelica.Units.SI.Height dBor "Borehole buried depth"; input Modelica.Units.SI.Radius rBor "Borehole radius"; input Modelica.Units.SI.ThermalDiffusivity aSoi "Ground thermal diffusivity used in g-function evaluation"; input Modelica.Units.SI.ThermalConductivity kSoi "Thermal conductivity of soil"; input Integer nSeg "Number of line source segments per borehole"; input Integer nZon "Total number of independent bore field zones"; input Integer[nBor] iZon "Index of the zone corresponding to each borehole"; input Integer[nZon] nBorPerZon "Number of boreholes per borefield zone"; input Modelica.Units.SI.Time nu[nTim] "Time vector for the calculation of thermal response factors"; input Integer nTim "Length of the time vector"; input Real relTol = 0.02 "Relative tolerance on distance between boreholes"; input String sha "SHA-1 encryption of the arguments of this function"; output Modelica.Units.SI.ThermalResistance kappa[nZon*nSeg,nZon*nSeg,nTim] "Thermal response factor matrix"; protected String fileName[nZon*nSeg] = { "tmp/temperatureResponseMatrix/kappa_" + String(i) + "_" + sha + ".mat" for i in 1:nZon*nSeg} "File name used to save the temperature response matrix"; Modelica.Units.SI.Time ts=hBor^2/(9*aSoi) "Characteristic time"; Integer n_max = max(nBorPerZon.*nBorPerZon); Modelica.Units.SI.Distance dis[nZon,nZon,n_max] "Separation distance between boreholes"; Modelica.Units.SI.Distance dis_ij "Separation distance between boreholes"; Integer wDis[nZon,nZon,n_max] "Number of occurence of separation distances"; Integer n_dis[nZon,nZon]; Modelica.Units.SI.Radius rLin=0.0005*hBor "Radius for evaluation of same-borehole line source solutions"; Real hSegRea[nSeg] "Real part of the FLS solution"; Real hSegMir[2*nSeg-1] "Mirror part of the FLS solution"; Modelica.Units.SI.Height dSeg "Buried depth of borehole segment"; Real FLS "Finite line source solution"; Real ILS "Infinite line source solution"; Real CHS "Cylindrical heat source solution"; Boolean found "Flag, true if a cluster has been found"; algorithm if not Modelica.Math.BooleanVectors.allTrue(Modelica.Utilities.Files.exist(fileName[:])) then // --------------------------------------------- // Distances between borehole in different zones // --------------------------------------------- n_dis := zeros(nZon,nZon); wDis := zeros(nZon,nZon,n_max); for i in 1:nBor loop for j in i:nBor loop // Distance between boreholes if i <> j then dis_ij := sqrt((cooBor[i,1] - cooBor[j,1])^2 + (cooBor[i,2] - cooBor[j,2])^2); else dis_ij := rLin; end if; found := false; for n in 1:n_dis[iZon[i],iZon[j]] loop if abs(dis_ij - dis[iZon[i],iZon[j],n]) / dis[iZon[i],iZon[j],n] < relTol then wDis[iZon[i],iZon[j],n] := wDis[iZon[i],iZon[j],n] + 1; found := true; if i <> j then wDis[iZon[j],iZon[i],n] := wDis[iZon[j],iZon[i],n] + 1; end if; break; end if; end for; if not found then n_dis[iZon[i],iZon[j]] := n_dis[iZon[i],iZon[j]] + 1; wDis[iZon[i],iZon[j],n_dis[iZon[i],iZon[j]]] := wDis[iZon[i],iZon[j],n_dis[iZon[i],iZon[j]]] + 1; dis[iZon[i],iZon[j],n_dis[iZon[i],iZon[j]]] := dis_ij; if i <> j then n_dis[iZon[j],iZon[i]] := n_dis[iZon[j],iZon[i]] + 1; wDis[iZon[j],iZon[i],n_dis[iZon[j],iZon[i]]] := wDis[iZon[j],iZon[i],n_dis[iZon[j],iZon[i]]] + 1; dis[iZon[j],iZon[i],n_dis[iZon[j],iZon[i]]] := dis_ij; end if; end if; end for; end for; // ---------------------------------- // Matrix of thermal response factors // ---------------------------------- // Evaluate thermal response matrix at all times for k in 1:nTim loop for i in 1:nZon loop for j in i:nZon loop // Evaluate Real and Mirror parts of FLS solution // Real part for m in 1:nSeg loop hSegRea[m] := Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.ThermalResponseFactors.finiteLineSource_Equivalent( nu[k], aSoi, dis[i,j,1:n_dis[i,j]], wDis[i,j,1:n_dis[i,j]], hBor/nSeg, dBor, hBor/nSeg, dBor + (m - 1)*hBor/nSeg, nBorPerZon[i], n_dis[i,j], includeMirrorSource=false); end for; // Mirror part for m in 1:(2*nSeg-1) loop hSegMir[m] := Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.ThermalResponseFactors.finiteLineSource_Equivalent( nu[k], aSoi, dis[i,j,1:n_dis[i,j]], wDis[i,j,1:n_dis[i,j]], hBor/nSeg, dBor, hBor/nSeg, dBor + (m - 1)*hBor/nSeg, nBorPerZon[i], n_dis[i,j], includeRealSource=false); end for; // Add thermal response factor to coefficient matrix A for u in 1:nSeg loop for v in 1:nSeg loop kappa[(i-1)*nSeg+u,(j-1)*nSeg+v,k] := hSegRea[abs(u-v)+1] + hSegMir[u+v-1]; kappa[(j-1)*nSeg+v,(i-1)*nSeg+u,k] := (hSegRea[abs(u-v)+1] + hSegMir[u+v-1]) * nBorPerZon[i] / nBorPerZon[j]; end for; end for; end for; end for; end for; // ----------------------------------- // Correction for cylindrical geometry // ----------------------------------- for k in 1:nTim loop // Infinite line source ILS := 0.5* Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.ThermalResponseFactors.infiniteLineSource( nu[k], aSoi, rLin); // Cylindrical heat source CHS := 2*Modelica.Constants.pi* Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.ThermalResponseFactors.cylindricalHeatSource( nu[k], aSoi, rBor, rBor); // Apply to all terms along the diagonal (i.e. the impact on the segments // on themselves) for i in 1:nZon loop for u in 1:nSeg loop kappa[(i-1)*nSeg+u,(i-1)*nSeg+u,k] := kappa[(i-1)*nSeg+u,(i-1)*nSeg+u,k] + (CHS - ILS); end for; end for; end for; // ----------------------------------------------------- // Incremental (dimensional) temperature response factor // ----------------------------------------------------- for k in 1:nTim-1 loop kappa[:,:,nTim-k+1] := (kappa[:,:,nTim-k+1] - kappa[:,:,nTim-k]) / (2*Modelica.Constants.pi*hBor/nSeg*kSoi); end for; kappa[:,:,1] := kappa[:,:,1] / (2*Modelica.Constants.pi*hBor/nSeg*kSoi); //creation of a temporary folder in the simulation folder Modelica.Utilities.Files.createDirectory("tmp"); Modelica.Utilities.Files.createDirectory("tmp/temperatureResponseMatrix"); for i in 1:nZon*nSeg loop assert(Modelica.Utilities.Streams.writeRealMatrix( fileName=fileName[i], matrixName="kappa", matrix=kappa[i, :, :], append=false), "In " + getInstanceName() +": Writing kappa.mat failed."); end for; end if; for i in 1:nZon*nSeg loop kappa[i,:,:] := Modelica.Utilities.Streams.readRealMatrix( fileName=fileName[i], matrixName="kappa", nrow=nZon*nSeg, ncol=nTim, verboseRead=false); end for; end temperatureResponseMatrix;

Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temporalSuperposition Buildings.Fluid.Geothermal.ZonedBorefields.BaseClasses.HeatTransfer.temporalSuperposition

Performs temporal superposition for the load aggregation procedure

Information

Performs the temporal and spatial superposition operations to obtain the temperature change at the wall of a borehole segment at the current time step. The spatial superposition of one load aggregation cell is the matrix-vector product of the kappa[:,:,k] step response matrix (at a cell k) and the vector of aggregated loads of all borehole segments in cell k, QAgg_flow[:,k]. The temporal superposition is the sum of the contributions of all load aggregation cells. To avoid unnecessary calculations, the current aggregation cell in the simulation is used to truncate the values from the vectors that are not required.

This is a vectorized implementation of Buildings.Fluid.Geothermal.Borefields.BaseClasses.HeatTransfer.LoadAggregation.temporalSuperposition.

Extends from Modelica.Icons.Function (Icon for functions).

Inputs

TypeNameDefaultDescription
Integeri Number of aggregation cells
IntegernSeg Number of segments
HeatFlowRateQAgg_flow[nSeg, i] Array of aggregated loads [W]
ThermalResistancekappa[nSeg, nSeg, i] Weighting factors for each aggregation cell [K/W]
IntegercurCel Current occupied aggregation cell

Outputs

TypeNameDescription
TemperatureDifferencedeltaTb[nSeg]Delta T at wall [K]

Modelica definition

function temporalSuperposition "Performs temporal superposition for the load aggregation procedure" extends Modelica.Icons.Function; input Integer i "Number of aggregation cells"; input Integer nSeg "Number of segments"; input Modelica.Units.SI.HeatFlowRate QAgg_flow[nSeg,i] "Array of aggregated loads"; input Modelica.Units.SI.ThermalResistance kappa[nSeg,nSeg,i] "Weighting factors for each aggregation cell"; input Integer curCel "Current occupied aggregation cell"; output Modelica.Units.SI.TemperatureDifference deltaTb[nSeg] "Delta T at wall"; algorithm deltaTb := kappa[:,:,1] * QAgg_flow[:,1]; for k in 2:curCel loop deltaTb := deltaTb + kappa[:,:,k] * QAgg_flow[:,k]; end for; end temporalSuperposition;