Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions
Package with functions for evaluation of borehole thermal resistances
Information
This package contains functions to evaluate borehole internal resistances used by models in Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.
Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).
Package Content
Name | Description |
---|---|
convectionResistanceCircularPipe | Thermal resistance from the fluid in pipes and the grout zones (Bauer et al. 2011) |
internalResistancesOneUTube | Thermal resistances for single U-tube, according to Bauer et al. (2011) |
internalResistancesTwoUTube | Thermal resistances for double U-tube, according to Bauer et al (2011) |
multipoleFluidTemperature | Fluid temperatures from multipole solution |
multipoleFmk | Complex matrix F_mk from Claesson and Hellstrom (2011) |
multipoleThermalResistances | Thermal resistances from multipole solution |
partialInternalResistances | Partial model for borehole resistance calculation |
Validation | Models to validate borehole thermal resistances functions |
Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.convectionResistanceCircularPipe
Thermal resistance from the fluid in pipes and the grout zones (Bauer et al. 2011)
Information
This model computes the convection resistance in the pipes of a borehole segment with heigth hSeg using correlations suggested by Bergman et al. (2011).
If the flow is laminar (Re ≤ 2300, with Re being the Reynolds number of the flow), the Nusselt number of the flow is assumed to be constant at 3.66. If the flow is turbulent (Re > 2300), the correlation of Dittus-Boelter is used to find the convection heat transfer coefficient as
Nu = 0.023 Re0.8 Prn,
where Nu is the Nusselt number and Pr is the Prandlt number. A value of n=0.35 is used, as the reference uses n=0.4 for heating and n=0.3 for cooling. To ensure that the function is continuously differentiable, a smooth transition between the laminar and turbulent values is created for the range 2300 < Re < 2400.
References
Bergman, T. L., Incropera, F. P., DeWitt, D. P., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer (7th ed.). New York: John Wiley & Sons.
Extends from Modelica.Icons.Function (Icon for functions).
Inputs
Type | Name | Default | Description |
---|---|---|---|
Height | hSeg | Height of the element [m] | |
Radius | rTub | Tube radius [m] | |
Length | eTub | Tube thickness [m] | |
ThermalConductivity | kMed | Thermal conductivity of the fluid [W/(m.K)] | |
DynamicViscosity | muMed | Dynamic viscosity of the fluid [Pa.s] | |
SpecificHeatCapacity | cpMed | Specific heat capacity of the fluid [J/(kg.K)] | |
MassFlowRate | m_flow | Mass flow rate [kg/s] | |
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] |
Outputs
Type | Name | Description |
---|---|---|
ThermalResistance | RFluPip | Convection resistance (or conduction in fluid if no mass flow) [K/W] |
Modelica definition
Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.internalResistancesOneUTube
Thermal resistances for single U-tube, according to Bauer et al. (2011)
Information
This model computes the different thermal resistances present in a single-U-tube borehole using the method of Bauer et al. (2011). It also computes the fluid-to-ground thermal resistance Rb and the grout-to-grout thermal resistance Ra as defined by Claesson and Hellstrom (2011) using the multipole method.
References
J. Claesson and G. Hellstrom. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research, 17(6): 895-911, 2011.
D. Bauer, W. Heidemann, H. Müller-Steinhagen, and H.-J. G. Diersch. Thermal resistance and capacity models for borehole heat exchangers. International Journal of Energy Research, 35:312–320, 2011.
Extends from Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.partialInternalResistances (Partial model for borehole resistance calculation).
Inputs
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_Rb | false | True if the value Rb should be used instead of calculated |
Real | Rb | Borehole thermal resistance [(m.K)/W] | |
Height | hSeg | Height of the element [m] | |
Radius | rBor | Radius of the borehole [m] | |
Radius | rTub | Radius of the tube [m] | |
Length | eTub | Thickness of the tubes [m] | |
Length | sha | Shank spacing, defined as the distance between the center of a pipe and the center of the borehole [m] | |
ThermalConductivity | kFil | Thermal conductivity of the grout [W/(m.K)] | |
ThermalConductivity | kSoi | Thermal conductivity of the soi [W/(m.K)] | |
ThermalConductivity | kTub | Thermal conductivity of the tube [W/(m.K)] | |
ThermalConductivity | kMed | Thermal conductivity of the fluid [W/(m.K)] | |
DynamicViscosity | muMed | Dynamic viscosity of the fluid [Pa.s] | |
SpecificHeatCapacity | cpMed | Specific heat capacity of the fluid [J/(kg.K)] | |
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
String | instanceName | "undeclared caller" | Instance name of the model or block that calls this function |
Outputs
Type | Name | Description |
---|---|---|
Real | x | Capacity location |
ThermalResistance | Rgb | Thermal resistance between grout zone and borehole wall [K/W] |
ThermalResistance | Rgg | Thermal resistance between the two grout zones [K/W] |
ThermalResistance | RCondGro | Thermal resistance between: pipe wall to capacity in grout [K/W] |
Modelica definition
Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.internalResistancesTwoUTube
Thermal resistances for double U-tube, according to Bauer et al (2011)
Information
This model computes the different thermal resistances present in a double U-tube borehole using the method of Bauer et al. (2011). It also computes the fluid-to-ground thermal resistance Rb and the grout-to-grout thermal resistance Ra as defined by Claesson and Hellstrom (2011) using the multipole method.
References
J. Claesson and G. Hellstrom. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research, 17(6): 895-911, 2011.
D. Bauer, W. Heidemann, H. Müller-Steinhagen, and H.-J. G. Diersch. Thermal resistance and capacity models for borehole heat exchangers. International Journal of Energy Research, 35:312–320, 2011.
Extends from Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.partialInternalResistances (Partial model for borehole resistance calculation).
Inputs
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_Rb | false | True if the value Rb should be used instead of calculated |
Real | Rb | Borehole thermal resistance [(m.K)/W] | |
Height | hSeg | Height of the element [m] | |
Radius | rBor | Radius of the borehole [m] | |
Radius | rTub | Radius of the tube [m] | |
Length | eTub | Thickness of the tubes [m] | |
Length | sha | Shank spacing, defined as the distance between the center of a pipe and the center of the borehole [m] | |
ThermalConductivity | kFil | Thermal conductivity of the grout [W/(m.K)] | |
ThermalConductivity | kSoi | Thermal conductivity of the soi [W/(m.K)] | |
ThermalConductivity | kTub | Thermal conductivity of the tube [W/(m.K)] | |
ThermalConductivity | kMed | Thermal conductivity of the fluid [W/(m.K)] | |
DynamicViscosity | muMed | Dynamic viscosity of the fluid [Pa.s] | |
SpecificHeatCapacity | cpMed | Specific heat capacity of the fluid [J/(kg.K)] | |
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
String | instanceName | "undeclared caller" | Instance name of the model or block that calls this function |
Outputs
Type | Name | Description |
---|---|---|
Real | x | Capacity location |
ThermalResistance | Rgb | Thermal resistance between a grout capacity and the borehole wall, as defined by Bauer et al (2010) [K/W] |
ThermalResistance | Rgg1 | Thermal resistance between two neightbouring grout capacities, as defined by Bauer et al (2010) [K/W] |
ThermalResistance | Rgg2 | Thermal resistance between two grout capacities opposite to each other, as defined by Bauer et al (2010) [K/W] |
ThermalResistance | RCondGro | Thermal resistance between a pipe wall and the grout capacity, as defined by Bauer et al (2010) [K/W] |
Modelica definition
Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.multipoleFluidTemperature
Fluid temperatures from multipole solution
Information
This model evaluates the fluid temperatures using the multipole method of Claesson and Hellstrom (2011).
References
J. Claesson and G. Hellstrom. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research, 17(6): 895-911, 2011.
Extends from Modelica.Icons.Function (Icon for functions).
Inputs
Type | Name | Default | Description |
---|---|---|---|
Integer | nPip | Number of pipes | |
Integer | J | Number of multipoles | |
Position | xPip[nPip] | x-Coordinates of pipes [m] | |
Position | yPip[nPip] | y-Coordinates of pipes [m] | |
Real | QPip_flow[nPip] | Heat flow in pipes [W/m] | |
Temperature | TBor | Average borehole wall temperature [K] | |
Radius | rBor | Borehole radius [m] | |
Radius | rPip[nPip] | Outter radius of pipes [m] | |
ThermalConductivity | kFil | Thermal conductivity of grouting material [W/(m.K)] | |
ThermalConductivity | kSoi | Thermal conductivity of soil material [W/(m.K)] | |
Real | RFluPip[nPip] | Fluid to pipe wall thermal resistances [(m.K)/W] | |
Real | eps | 1.0e-5 | Iteration relative accuracy |
Integer | it_max | 100 | Maximum number of iterations |
Outputs
Type | Name | Description |
---|---|---|
Temperature | TFlu[nPip] | Fluid temperature in pipes [K] |
Modelica definition
Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.multipoleFmk
Complex matrix F_mk from Claesson and Hellstrom (2011)
Information
This model evaluates the complex coefficient matrix F_mk from Claesson and Hellstrom (2011).
References
J. Claesson and G. Hellstrom. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research, 17(6): 895-911, 2011.
Extends from Modelica.Icons.Function (Icon for functions).
Inputs
Type | Name | Default | Description |
---|---|---|---|
Integer | nPip | Number of pipes | |
Integer | J | Number of multipoles | |
Real | QPip_flow[nPip] | Heat flow in pipes [W/m] | |
Real | PRea[nPip, J] | Multipoles (Real part) | |
Real | PIma[nPip, J] | Multipoles (Imaginary part) | |
Radius | rBor | Borehole radius [m] | |
Radius | rPip[nPip] | Outter radius of pipes [m] | |
Position | xPip[nPip] | x-Coordinates of pipes [m] | |
Position | yPip[nPip] | y-Coordinates of pipes [m] | |
ThermalConductivity | kFil | Thermal conductivity of grouting material [W/(m.K)] | |
ThermalConductivity | kSoi | Thermal conductivity of soil material [W/(m.K)] |
Outputs
Type | Name | Description |
---|---|---|
Real | FRea[nPip, J] | Multipole coefficients |
Real | FIma[nPip, J] | Multipole coefficients |
Modelica definition
Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.multipoleThermalResistances
Thermal resistances from multipole solution
Information
This model evaluates the delta-circuit borehole thermal resistances using the multipole method of Claesson and Hellstrom (2011).
References
J. Claesson and G. Hellstrom. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger. HVAC&R Research, 17(6): 895-911, 2011.
Extends from Modelica.Icons.Function (Icon for functions).
Inputs
Type | Name | Default | Description |
---|---|---|---|
Integer | nPip | Number of pipes | |
Integer | J | Number of multipoles | |
Position | xPip[nPip] | x-Coordinates of pipes [m] | |
Position | yPip[nPip] | y-Coordinates of pipes [m] | |
Radius | rBor | Borehole radius [m] | |
Radius | rPip[nPip] | Outter radius of pipes [m] | |
ThermalConductivity | kFil | Thermal conductivity of grouting material [W/(m.K)] | |
ThermalConductivity | kSoi | Thermal conductivity of soil material [W/(m.K)] | |
Real | RFluPip[nPip] | Fluid to pipe wall thermal resistances [(m.K)/W] | |
Temperature | TBor | 0 | Average borehole wall temperature [K] |
Outputs
Type | Name | Description |
---|---|---|
Real | RDelta[nPip, nPip] | Delta-circuit thermal resistances [(m.K)/W] |
Real | R[nPip, nPip] | Internal thermal resistances [(m.K)/W] |
Modelica definition
Buildings.Fluid.Geothermal.Borefields.BaseClasses.Boreholes.BaseClasses.Functions.partialInternalResistances
Partial model for borehole resistance calculation
Information
This partial function defines the common inputs to functions that calculate the borehole internal resistances.
Extends from Modelica.Icons.Function (Icon for functions).
Inputs
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_Rb | false | True if the value Rb should be used instead of calculated |
Real | Rb | Borehole thermal resistance [(m.K)/W] | |
Height | hSeg | Height of the element [m] | |
Radius | rBor | Radius of the borehole [m] | |
Radius | rTub | Radius of the tube [m] | |
Length | eTub | Thickness of the tubes [m] | |
Length | sha | Shank spacing, defined as the distance between the center of a pipe and the center of the borehole [m] | |
ThermalConductivity | kFil | Thermal conductivity of the grout [W/(m.K)] | |
ThermalConductivity | kSoi | Thermal conductivity of the soi [W/(m.K)] | |
ThermalConductivity | kTub | Thermal conductivity of the tube [W/(m.K)] | |
ThermalConductivity | kMed | Thermal conductivity of the fluid [W/(m.K)] | |
DynamicViscosity | muMed | Dynamic viscosity of the fluid [Pa.s] | |
SpecificHeatCapacity | cpMed | Specific heat capacity of the fluid [J/(kg.K)] | |
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
String | instanceName | "undeclared caller" | Instance name of the model or block that calls this function |
Outputs
Type | Name | Description |
---|---|---|
Real | x | Capacity location |