Name | Description |
---|---|
UsersGuide | User's Guide |
MoistAirInterface | Fluid interface that can be coupled to BCVTB for medium that model the air humidity |
BCVTB | Block that exchanges data with the Building Controls Virtual Test Bed |
To_degC | Converts Kelvin to Celsius |
From_degC | Converts Celsius to Kelvin |
Examples | Collection of models that illustrate model use and test models |
BaseClasses | Package with base classes for Buildings.Utilities.IO.BCVTB |
The model takes as input signals the temperature and water vapor concentration and, optionally, a bulk mass flow rate into or out of the system boundary. The state of the fluid that flows out of this model will be at this temperature and water vapor concentration. The output of this model are the sensible and latent heat exchanged across the system boundary.
When used with the BCVTB, a building simulation program such as EnergyPlus may compute the room air temperatures and room air humidity rate, which is then used as an input to this model. The sensible and latent heat flow rates may be sent to EnergyPlus to couple the air-conditioning system to the energy balance of the building model.
Note: The EnergyPlus building simulation program outputs the
absolute humidity ratio in units of [kg/kg dry air]. Since
Modelica.Media
uses [kg/kg total mass of air], this quantity
needs to be converted. The conversion can be done with the model
Buildings.Utilities.Psychrometrics.ToTotalAir.
Extends from Buildings.Utilities.IO.BCVTB.BaseClasses.FluidInterface (Partial class for fluid interface that can be coupled to BCVTB).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialMedium | Medium model within the source | |
Boolean | use_m_flow_in | false | Get the mass flow rate from the input connector |
MassFlowRate | m_flow | 0 | Fixed mass flow rate going out of the fluid port [kg/s] |
Nominal condition | |||
MassFlowRate | m_flow_nominal | Nominal mass flow rate, used for regularization near zero flow [kg/s] | |
Advanced | |||
MassFlowRate | m_flow_small | 1E-4*m_flow_nominal | For bi-directional flow, temperature is regularized in the region |m_flow| < m_flow_small (m_flow_small > 0 required) [kg/s] |
Type | Name | Description |
---|---|---|
input RealInput | m_flow_in | Prescribed mass flow rate |
input RealInput | T_in | Prescribed boundary temperature |
FluidPorts_b | ports[nPorts] | |
output RealOutput | HSen_flow | Sensible enthalpy flow rate, positive if flow into the component [W] |
output RealOutput | HLat_flow | Latent enthalpy flow rate, positive if flow into the component [W] |
input RealInput | phi | Medium relative humidity |
model MoistAirInterface "Fluid interface that can be coupled to BCVTB for medium that model the air humidity" extends Buildings.Utilities.IO.BCVTB.BaseClasses.FluidInterface(bou( final use_X_in=true));Modelica.Blocks.Interfaces.RealOutput HLat_flow(unit="W") "Latent enthalpy flow rate, positive if flow into the component"; Buildings.Fluid.Sensors.SensibleEnthalpyFlowRate senEntFloRat[nPorts]( redeclare final package Medium = Medium, each final m_flow_nominal=m_flow_nominal) "Sensible enthalpy flow rates"; Modelica.Blocks.Math.Sum sumHSen_flow(nin=nPorts) "Sum of sensible enthalpy flow rates"; Modelica.Blocks.Math.Feedback diff "Difference between total and sensible enthalpy flow rate"; Modelica.Blocks.Interfaces.RealInput phi "Medium relative humidity"; Buildings.Utilities.Psychrometrics.X_pTphi masFra( use_p_in=false, redeclare package Medium = Medium) "Mass fraction"; equation for i in 1:nPorts loopconnect(senEntFloRat[i].port_a, ports[i]); connect(senEntFloRat[i].H_flow, sumHSen_flow.u[i]); end for;connect(senEntFloRat.port_b, totEntFloRat.port_a); connect(sumHSen_flow.y, HSen_flow); connect(sumHTot_flow.y, diff.u1); connect(diff.y, HLat_flow); connect(diff.u2, sumHSen_flow.y); connect(masFra.T, T_in); connect(masFra.phi, phi); connect(masFra.X, bou.X_in); end MoistAirInterface;
At the start of the simulation, this block establishes a socket connection using the Berkeley Software Distribution socket (BSD socket). At each sampling interval, data are exchanged between Modelica and the BCVTB. When Dymola terminates, a signal is sent to the BCVTB so that it can terminate gracefully.
For each element in the input vector uR[nDblWri]
,
the value of the flag flaDblWri[nDblWri]
determines whether
the current value, the average over the sampling interval or the integral
over the sampling interval is sent to the BCVTB. The following three options are allowed:
flaDblWri[i] | Value sent to the BCVTB |
0 | Current value of uR[i] |
1 | Average value of uR[i] over the sampling interval |
2 | Integral of uR[i] over the sampling interval |
For the first call to the BCVTB interface, the value of the parameter uStart[nDblWri]
will be used instead of uR[nDblWri]
. This avoids an algebraic loop when determining
the initial conditions. If uR[nDblWri]
were to be used, then computing the initial conditions
may require an iterative solution in which the function exchangeWithSocket
may be called
multiple times.
Unfortunately, it does not seem possible to use a parameter that would give a user the option to either
select uR[i]
or uStart[i]
in the first data exchange. The reason is that the symbolic solver does not evaluate
the test that picks uR[i]
or uStart[i]
, and hence there would be an algebraic loop.
If the parameter activateInterface
is set to false, then no data is exchanged with the BCVTB.
The output of this block is then equal to the value of the parameter yRFixed[nDblRea]
.
This option can be helpful during debugging. Since during model translation, the functions are
still linked to the C library, the header files and libraries need to be present in the current working
directory even if activateInterface=false
.
Extends from Modelica.Blocks.Interfaces.DiscreteBlock (Base class of discrete control blocks).
Type | Name | Default | Description |
---|---|---|---|
Time | samplePeriod | if activateInterface then ti... | Sample period of component [s] |
Time | startTime | 0 | First sample time instant [s] |
Boolean | activateInterface | true | Set to false to deactivate interface and use instead yFixed as output |
Time | timeStep | Time step used for the synchronization [s] | |
String | xmlFileName | "socket.cfg" | Name of the file that is generated by the BCVTB and that contains the socket information |
Integer | nDblWri | Number of double values to write to the BCVTB | |
Integer | nDblRea | Number of double values to be read from the BCVTB | |
Integer | flaDblWri[nDblWri] | zeros(nDblWri) | Flag for double values (0: use current value, 1: use average over interval, 2: use integral over interval) |
Real | uStart[nDblWri] | Initial input signal, used during first data transfer with BCVTB | |
Real | yRFixed[nDblRea] | zeros(nDblRea) | Fixed output, used if activateInterface=false |
Type | Name | Description |
---|---|---|
input RealInput | uR[nDblWri] | Real inputs to be sent to the BCVTB |
output RealOutput | yR[nDblRea] | Real outputs received from the BCVTB |
model BCVTB "Block that exchanges data with the Building Controls Virtual Test Bed" extends Modelica.Blocks.Interfaces.DiscreteBlock(final startTime=0, final samplePeriod = if activateInterface then timeStep else Modelica.Constants.inf); parameter Boolean activateInterface = true "Set to false to deactivate interface and use instead yFixed as output"; parameter Modelica.SIunits.Time timeStep "Time step used for the synchronization"; parameter String xmlFileName = "socket.cfg" "Name of the file that is generated by the BCVTB and that contains the socket information"; parameter Integer nDblWri(min=0) "Number of double values to write to the BCVTB"; parameter Integer nDblRea(min=0) "Number of double values to be read from the BCVTB"; parameter Integer flaDblWri[nDblWri] = zeros(nDblWri) "Flag for double values (0: use current value, 1: use average over interval, 2: use integral over interval)"; parameter Real uStart[nDblWri] "Initial input signal, used during first data transfer with BCVTB"; parameter Real yRFixed[nDblRea] = zeros(nDblRea) "Fixed output, used if activateInterface=false";Modelica.Blocks.Interfaces.RealInput uR[nDblWri] "Real inputs to be sent to the BCVTB"; Modelica.Blocks.Interfaces.RealOutput yR[nDblRea] "Real outputs received from the BCVTB"; Integer flaRea "Flag received from BCVTB"; Modelica.SIunits.Time simTimRea "Current simulation time received from the BCVTB"; Integer retVal "Return value from the BSD socket data exchange"; protected parameter Integer socketFD(fixed=false) "Socket file descripter, or a negative value if an error occured"; parameter Real _uStart[nDblWri](fixed=false) "Initial input signal, used during first data transfer with BCVTB"; constant Integer flaWri=0; Real uRInt[nDblWri] "Value of integral"; Real uRIntPre[nDblWri] "Value of integral at previous sampling instance"; public Real uRWri[nDblWri] "Value to be sent to the interface"; initial algorithm socketFD :=if activateInterface then Buildings.Utilities.IO.BCVTB.BaseClasses.establishClientSocket(xmlFileName=xmlFileName) else 0; // check for valid socketFD assert(socketFD >= 0, "Socket file descripter for BCVTB must be positive.\n" + " A negative value indicates that no connection\n" + " could be established. Check file 'utilSocket.log'.\n" + " Received: socketFD = " + String(socketFD)); flaRea := 0; uRInt := zeros(nDblWri); uRIntPre := zeros(nDblWri); for i in 1:nDblWri loop assert(flaDblWri[i]>=0 and flaDblWri[i]<=2, "Parameter flaDblWri out of range for " + String(i) + "-th component."); if (flaDblWri[i] == 0) then _uStart[i] := uStart[i]; // Current value. elseif (flaDblWri[i] == 1) then _uStart[i] := uStart[i]; // Average over interval else _uStart[i] := uStart[i]*samplePeriod; // Integral over the sampling interval // This is multiplied with samplePeriod because if // u is power, then uRWri needs to be energy. end if; end for; // Exchange initial values if activateInterface then (flaRea, simTimRea, yR, retVal) := Buildings.Utilities.IO.BCVTB.BaseClasses.exchangeReals( socketFD=socketFD, flaWri=flaWri, simTimWri=time, dblValWri=_uStart, nDblWri=size(uRWri, 1), nDblRea=size(yR, 1)); else flaRea := 0; simTimRea := time; yR := yRFixed; retVal := 0; end if; equation for i in 1:nDblWri loop der(uRInt[i]) = if (flaDblWri[i] > 0) then uR[i] else 0; end for; algorithm when {sampleTrigger} then assert(flaRea == 0, "BCVTB interface attempts to exchange data after Ptolemy reached its final time.\n" + " Aborting simulation. Check final time in Modelica and in Ptolemy.\n" + " Received: flaRea = " + String(flaRea)); // Compute value that will be sent to the BCVTB interface for i in 1:nDblWri loop if (flaDblWri[i] == 0) then uRWri[i] :=pre(uR[i]); // Send the current value. // Without the pre(), Dymola 7.2 crashes during translation of Examples.MoistAir else uRWri[i] :=uRInt[i] - uRIntPre[i]; // Integral over the sampling interval if (flaDblWri[i] == 1) then uRWri[i] := uRWri[i]/samplePeriod; // Average value over the sampling interval end if; end if; end for; // Exchange data if activateInterface then (flaRea, simTimRea, yR, retVal) := Buildings.Utilities.IO.BCVTB.BaseClasses.exchangeReals( socketFD=socketFD, flaWri=flaWri, simTimWri=time, dblValWri=uRWri, nDblWri=size(uRWri, 1), nDblRea=size(yR, 1)); else flaRea := 0; simTimRea := time; yR := yRFixed; retVal := 0; end if; // Check for valid return flags assert(flaRea >= 0, "BCVTB sent a negative flag to Modelica during data transfer.\n" + " Aborting simulation. Check file 'utilSocket.log'.\n" + " Received: flaRea = " + String(flaRea)); assert(retVal >= 0, "Obtained negative return value during data transfer with BCVTB.\n" + " Aborting simulation. Check file 'utilSocket.log'.\n" + " Received: retVal = " + String(retVal)); // Store current value of integral uRIntPre:=uRInt; end when; // Close socket connnection when terminal() then if activateInterface then Buildings.Utilities.IO.BCVTB.BaseClasses.closeClientSocket( socketFD); end if; end when;end BCVTB;
Converts the input from degree Celsius to Kelvin. Note that inside Modelica, it is strongly recommended to use Kelvin. This block is provided for convenience since the BCVTB interface may couple Modelica to programs that use Celsius as the unit for temperature.
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
input RealInput | Kelvin | Temperature in Kelvin [K] |
output RealOutput | Celsius | Temperature in Celsius [degC] |
block To_degC "Converts Kelvin to Celsius" extends Modelica.Blocks.Interfaces.BlockIcon;Modelica.Blocks.Interfaces.RealInput Kelvin(final quantity="Temperature", final unit = "K", displayUnit = "degC", min=0) "Temperature in Kelvin"; Modelica.Blocks.Interfaces.RealOutput Celsius(final quantity="Temperature", final unit = "degC", displayUnit = "degC", min=-273.15) "Temperature in Celsius"; equation Kelvin = Modelica.SIunits.Conversions.from_degC(Celsius);end To_degC;
Converts the input from Kelvin to degree Celsius. Note that inside Modelica, by convention, all models use Kelvin. This block is provided for convenience since the BCVTB interface may couple Modelica to programs that use Celsius as the unit for temperature.
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
input RealInput | Celsius | Temperature in Celsius [degC] |
output RealOutput | Kelvin | Temperature in Kelvin [K] |
block From_degC "Converts Celsius to Kelvin" extends Modelica.Blocks.Interfaces.BlockIcon;Modelica.Blocks.Interfaces.RealInput Celsius(final quantity="Temperature", final unit = "degC", displayUnit = "degC", min=-273.15) "Temperature in Celsius"; Modelica.Blocks.Interfaces.RealOutput Kelvin(final quantity="Temperature", final unit = "K", displayUnit = "degC", min=0) "Temperature in Kelvin"; equation Celsius = Modelica.SIunits.Conversions.to_degC(Kelvin);end From_degC;