This package contains base classes that are used to construct the models in Buildings.Fluid.
Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).
Name | Description |
---|---|
FlowModels | Flow models for pressure drop calculations |
PartialResistance | Partial model for a hydraulic resistance |
PartialThreeWayResistance | Flow splitter with partial resistance model at each port |
Partial model for a flow resistance, possible with variable flow coefficient.
Models that extend this class need to implement an equation that relates
m_flow
and dp
, and they need to assign the parameter
m_flow_turbulent
.
See for example Buildings.Fluid.FixedResistances.FixedResistanceDpM for a model that extends this base class.
Extends from Buildings.Fluid.Interfaces.PartialTwoPortInterface (Partial model transporting fluid between two ports without storing mass or energy).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialMedium | Medium in the component | |
MassFlowRate | m_flow_turbulent | Turbulent flow if |m_flow| >= m_flow_turbulent [kg/s] | |
Nominal condition | |||
MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
Pressure | dp_nominal | Pressure drop at nominal mass flow rate [Pa] | |
Assumptions | |||
Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) |
Advanced | |||
MassFlowRate | m_flow_small | 1E-4*abs(m_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
Boolean | homotopyInitialization | true | = true, use homotopy method |
Boolean | from_dp | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate |
Diagnostics | |||
Boolean | show_V_flow | false | = true, if volume flow rate at inflowing port is computed |
Boolean | show_T | false | = true, if actual temperature at port is computed (may lead to events) |
Type | Name | Description |
---|---|---|
FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) |
FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) |
partial model PartialResistance "Partial model for a hydraulic resistance" extends Buildings.Fluid.Interfaces.PartialTwoPortInterface( show_T=false, show_V_flow=false, m_flow(start=0, nominal=m_flow_nominal_pos), dp(start=0, nominal=dp_nominal_pos), final m_flow_small = 1E-4*abs(m_flow_nominal)); parameter Boolean from_dp = false "= true, use m_flow = f(dp) else dp = f(m_flow)"; parameter Modelica.SIunits.MassFlowRate m_flow_nominal "Nominal mass flow rate"; parameter Modelica.SIunits.Pressure dp_nominal(displayUnit="Pa") "Pressure drop at nominal mass flow rate"; parameter Boolean homotopyInitialization = true "= true, use homotopy method"; parameter Boolean linearized = false "= true, use linear relation between m_flow and dp for any flow rate"; parameter Modelica.SIunits.MassFlowRate m_flow_turbulent(min=0) "Turbulent flow if |m_flow| >= m_flow_turbulent"; protected parameter Medium.ThermodynamicState sta0= Medium.setState_pTX(T=Medium.T_default, p=Medium.p_default, X=Medium.X_default); parameter Modelica.SIunits.DynamicViscosity eta_nominal=Medium.dynamicViscosity(sta0) "Dynamic viscosity, used to compute transition to turbulent flow regime"; protected final parameter Modelica.SIunits.MassFlowRate m_flow_nominal_pos = abs(m_flow_nominal) "Absolute value of nominal flow rate"; final parameter Modelica.SIunits.Pressure dp_nominal_pos = abs(dp_nominal) "Absolute value of nominal pressure"; equation // Isenthalpic state transformation (no storage and no loss of energy) port_a.h_outflow = inStream(port_b.h_outflow); port_b.h_outflow = inStream(port_a.h_outflow); // Mass balance (no storage) port_a.m_flow + port_b.m_flow = 0; // Transport of substances port_a.Xi_outflow = inStream(port_b.Xi_outflow); port_b.Xi_outflow = inStream(port_a.Xi_outflow); port_a.C_outflow = inStream(port_b.C_outflow); port_b.C_outflow = inStream(port_a.C_outflow);end PartialResistance;
Partial model for flow resistances with three ports such as a flow mixer/splitter or a three way valve.
If dynamicBalance=true
, then at the junction of the three flows,
a mixing volume will be present. This will introduce a dynamic energy and momentum
balance, which often breaks algebraic loops.
The time constant of the mixing volume is determined by the parameter tau
.
Extends from Buildings.Fluid.Interfaces.LumpedVolumeDeclarations (Declarations for lumped volumes).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium | PartialMedium | Medium in the component | |
PartialTwoPortInterface | res1 | redeclare Buildings.Fluid.In... | Partial model, to be replaced with a fluid component |
PartialTwoPortInterface | res2 | redeclare Buildings.Fluid.In... | Partial model, to be replaced with a fluid component |
PartialTwoPortInterface | res3 | redeclare Buildings.Fluid.In... | Partial model, to be replaced with a fluid component |
Dynamics | |||
Equations | |||
Dynamics | energyDynamics | Modelica.Fluid.Types.Dynamic... | Formulation of energy balance |
Dynamics | massDynamics | energyDynamics | Formulation of mass balance |
Boolean | dynamicBalance | true | Set to true to use a dynamic balance, which often leads to smaller systems of equations |
MassFlowRate | mDyn_flow_nominal | Nominal mass flow rate for dynamic momentum and energy balance [kg/s] | |
Nominal condition | |||
Time | tau | 10 | Time constant at nominal flow for dynamic energy and momentum balance [s] |
Initialization | |||
AbsolutePressure | p_start | Medium.p_default | Start value of pressure [Pa] |
Temperature | T_start | Medium.T_default | Start value of temperature [K] |
MassFraction | X_start[Medium.nX] | Medium.X_default | Start value of mass fractions m_i/m [kg/kg] |
ExtraProperty | C_start[Medium.nC] | fill(0, Medium.nC) | Start value of trace substances |
ExtraProperty | C_nominal[Medium.nC] | fill(1E-2, Medium.nC) | Nominal value of trace substances. (Set to typical order of magnitude.) |
Advanced | |||
Boolean | from_dp | true | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | homotopyInitialization | true | = true, use homotopy method |
Type | Name | Description |
---|---|---|
FluidPort_a | port_1 | |
FluidPort_b | port_2 | |
FluidPort_a | port_3 |
partial model PartialThreeWayResistance "Flow splitter with partial resistance model at each port" extends Buildings.Fluid.Interfaces.LumpedVolumeDeclarations; outer Modelica.Fluid.System system "System properties";Modelica.Fluid.Interfaces.FluidPort_a port_1(redeclare package Medium = Medium, m_flow(min=if (portFlowDirection_1 == Modelica.Fluid.Types.PortFlowDirection.Entering) then 0.0 else -Modelica.Constants.inf, max=if (portFlowDirection_1 == Modelica.Fluid.Types.PortFlowDirection.Leaving) then 0.0 else Modelica.Constants.inf)); Modelica.Fluid.Interfaces.FluidPort_b port_2(redeclare package Medium = Medium, m_flow(min=if (portFlowDirection_2 == Modelica.Fluid.Types.PortFlowDirection.Entering) then 0.0 else -Modelica.Constants.inf, max=if (portFlowDirection_2 == Modelica.Fluid.Types.PortFlowDirection.Leaving) then 0.0 else Modelica.Constants.inf)); Modelica.Fluid.Interfaces.FluidPort_a port_3( redeclare package Medium=Medium, m_flow(min=if (portFlowDirection_3==Modelica.Fluid.Types.PortFlowDirection.Entering) then 0.0 else -Modelica.Constants.inf, max=if (portFlowDirection_3==Modelica.Fluid.Types.PortFlowDirection.Leaving) then 0.0 else Modelica.Constants.inf)); parameter Boolean from_dp = true "= true, use m_flow = f(dp) else dp = f(m_flow)"; parameter Boolean homotopyInitialization = true "= true, use homotopy method";replaceable Buildings.Fluid.Interfaces.PartialTwoPortInterface res1(redeclare package Medium = Medium, allowFlowReversal=true, homotopyInitialization=homotopyInitialization) "Partial model, to be replaced with a fluid component"; replaceable Buildings.Fluid.Interfaces.PartialTwoPortInterface res2(redeclare package Medium = Medium, allowFlowReversal=true, homotopyInitialization=homotopyInitialization) "Partial model, to be replaced with a fluid component"; replaceable Buildings.Fluid.Interfaces.PartialTwoPortInterface res3(redeclare package Medium = Medium, allowFlowReversal=true, homotopyInitialization=homotopyInitialization) "Partial model, to be replaced with a fluid component"; protected parameter Modelica.Fluid.Types.PortFlowDirection portFlowDirection_1=Modelica.Fluid.Types.PortFlowDirection.Bidirectional "Flow direction for port_1"; parameter Modelica.Fluid.Types.PortFlowDirection portFlowDirection_2=Modelica.Fluid.Types.PortFlowDirection.Bidirectional "Flow direction for port_2"; parameter Modelica.Fluid.Types.PortFlowDirection portFlowDirection_3=Modelica.Fluid.Types.PortFlowDirection.Bidirectional "Flow direction for port_3";public Buildings.Fluid.Delays.DelayFirstOrder vol( redeclare final package Medium = Medium, final nPorts=3, final tau=tau, final m_flow_nominal=mDyn_flow_nominal, final energyDynamics=energyDynamics, final massDynamics=massDynamics, final p_start=p_start, final T_start=T_start, final X_start=X_start, final C_start=C_start, final allowFlowReversal=true, final prescribedHeatFlowRate=false) if dynamicBalance "Fluid volume to break algebraic loop"; parameter Boolean dynamicBalance = true "Set to true to use a dynamic balance, which often leads to smaller systems of equations"; parameter Modelica.SIunits.Time tau=10 "Time constant at nominal flow for dynamic energy and momentum balance"; parameter Modelica.SIunits.MassFlowRate mDyn_flow_nominal "Nominal mass flow rate for dynamic momentum and energy balance"; equationconnect(port_1, res1.port_a); connect(res2.port_a, port_2); connect(res3.port_a, port_3); connect(res1.port_b,vol. ports[1]); connect(res2.port_b,vol. ports[2]); connect(res3.port_b,vol. ports[3]); if not dynamicBalance thenconnect(res1.port_b, res3.port_b); connect(res1.port_b, res2.port_b); end if;end PartialThreeWayResistance;