The nomenclature used in this package is described at Buildings.UsersGuide.Conventions.
Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).
Name | Description |
---|---|
X_pW | Humidity ratio for given water vapor pressure |
pW_X | Water vapor pressure for given humidity ratio |
X_pTphi | Return steam mass fraction as a function of relative humidity phi and temperature T |
TDewPoi_pW | Model to compute the dew point temperature for given water vapor pressure of moist air |
ToDryAir | Block to convert absolute humidity from [kg/kg total air] to [kg/kg dry air] |
ToTotalAir | Block to convert absolute humidity from [kg/kg dry air] to [kg/kg total air] |
TWetBul_TDryBulXi | Model to compute the wet bulb temperature |
pW_TDewPoi | Model to compute the water vapor pressure for a given dew point temperature of moist air |
Functions | Package with psychrometric functions |
Examples | Collection of models that illustrate model use and test models |
BaseClasses | Package with base classes for Buildings.Utilities.Psychrometrics |
Block to compute the humidity ratio for a given water vapor partial pressure.
If use_p_in
is false (default option), the p
parameter
is used as atmospheric pressure,
and the p_in
input connector is disabled;
if use_p_in
is true, then the p
parameter is ignored,
and the value provided by the input connector is used instead.
Extends from Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure (Humidity ratio for given water vapor pressure).
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_p_in | true | Get the pressure from the input connector |
Pressure | p | 101325 | Fixed value of pressure [Pa] |
Type | Name | Description |
---|---|---|
input RealInput | p_in | Atmospheric Pressure [Pa] |
output RealOutput | X_w | Species concentration at dry bulb temperature |
input RealInput | p_w | Water vapor pressure [Pa] |
block X_pW "Humidity ratio for given water vapor pressure" extends Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure;Modelica.Blocks.Interfaces.RealOutput X_w(min=0, max=1, nominal=0.01) "Species concentration at dry bulb temperature"; Modelica.Blocks.Interfaces.RealInput p_w(final quantity="Pressure", final unit="Pa", displayUnit="Pa", min = 0) "Water vapor pressure"; output Modelica.SIunits.MassFraction x_w(min=0, max=1, nominal=0.01, start=0.001) "Water mass fraction per mass of dry air"; equation X_w = Buildings.Utilities.Psychrometrics.Functions.X_pW(p_w=p_w, p=p_in_internal); x_w = X_w/(1-X_w);end X_pW;
Block to compute the water vapor partial pressure for a given humidity ratio.
If use_p_in
is false (default option), the p
parameter
is used as atmospheric pressure,
and the p_in
input connector is disabled;
if use_p_in
is true, then the p
parameter is ignored,
and the value provided by the input connector is used instead.
Extends from Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure (Humidity ratio for given water vapor pressure).
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_p_in | true | Get the pressure from the input connector |
Pressure | p | 101325 | Fixed value of pressure [Pa] |
Type | Name | Description |
---|---|---|
input RealInput | p_in | Atmospheric Pressure [Pa] |
input RealInput | X_w | Species concentration at dry bulb temperature |
output RealOutput | p_w | Water vapor pressure [Pa] |
block pW_X "Water vapor pressure for given humidity ratio" extends Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure;Modelica.Blocks.Interfaces.RealInput X_w(min=0, max=1, nominal=0.01) "Species concentration at dry bulb temperature"; Modelica.Blocks.Interfaces.RealOutput p_w(final quantity="Pressure", final unit="Pa", displayUnit="Pa", min = 0) "Water vapor pressure"; output Modelica.SIunits.MassFraction x_w(min=0, max=1, nominal=0.01, start=0.001) "Water mass fraction per mass of dry air"; equation p_w = Buildings.Utilities.Psychrometrics.Functions.pW_X(X_w=X_w, p=p_in_internal); x_w = X_w/(1-X_w);end pW_X;
Block to compute the water vapor concentration based on pressure, temperature and relative humidity.
If use_p_in
is false (default option), the p
parameter
is used as atmospheric pressure,
and the p_in
input connector is disabled;
if use_p_in
is true, then the p
parameter is ignored,
and the value provided by the input connector is used instead.
Extends from Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure (Humidity ratio for given water vapor pressure).
Type | Name | Default | Description |
---|---|---|---|
Boolean | use_p_in | true | Get the pressure from the input connector |
Pressure | p | 101325 | Fixed value of pressure [Pa] |
Type | Name | Description |
---|---|---|
input RealInput | p_in | Atmospheric Pressure [Pa] |
input RealInput | T | Temperature [K] |
input RealInput | phi | Relative humidity (0...1) |
output RealOutput | X[Medium.nX] | Steam mass fraction |
block X_pTphi "Return steam mass fraction as a function of relative humidity phi and temperature T" extends Buildings.Utilities.Psychrometrics.BaseClasses.HumidityRatioVaporPressure; replaceable package Medium = Modelica.Media.Interfaces.PartialCondensingGases "Medium model";public Modelica.Blocks.Interfaces.RealInput T(final unit="K", displayUnit="degC", min = 0) "Temperature"; Modelica.Blocks.Interfaces.RealInput phi(min = 0, max=1) "Relative humidity (0...1)"; Modelica.Blocks.Interfaces.RealOutput X[Medium.nX](min = 0, max=1) "Steam mass fraction"; protected constant Real k = 0.621964713077499 "Ratio of molar masses"; Modelica.SIunits.AbsolutePressure psat "Saturation pressure"; parameter Integer i_w(min=1, fixed=false) "Index for water substance"; parameter Integer i_nw(min=1, fixed=false) "Index for non-water substance"; parameter Boolean found(fixed=false) "Flag, used for error checking"; initial algorithm found:=false; i_w :=1; for i in 1:Medium.nXi loop if Modelica.Utilities.Strings.isEqual(string1=Medium.substanceNames[i], string2="water", caseSensitive=false) then i_w :=i; found:=true; end if; end for; i_nw := if i_w == 1 then 2 else 1; assert(found, "Did not find medium species 'water' in the medium model. Change medium model."); algorithm psat := Medium.saturationPressure(T); X[i_w] := phi*k/(k*phi+p_in_internal/psat-phi); //sum(X[:]) = 1; // The formulation with a sum in an equation section leads to a nonlinear equation system X[i_nw] := 1 - X[i_w];end X_pTphi;
Dew point temperature calculation for moist air above freezing temperature.
The correlation used in this model is valid for dew point temperatures between
0 degC
and 200 degC
. It is the correlation from 2005
ASHRAE Handbook, p. 6.2. In an earlier version of this model, the equation from
Peppers has been used, but this equation yielded about 15 Kelvin lower dew point
temperatures.
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
input RealInput | p_w | Water vapor partial pressure |
output RealOutput | T | Dew point temperature [K] |
block TDewPoi_pW "Model to compute the dew point temperature for given water vapor pressure of moist air" extends Modelica.Blocks.Interfaces.BlockIcon;Modelica.Blocks.Interfaces.RealInput p_w "Water vapor partial pressure"; Modelica.Blocks.Interfaces.RealOutput T(start=278.15, final quantity="Temperature", final unit="K", min = 0, displayUnit="degC") "Dew point temperature"; equation p_w = Buildings.Utilities.Psychrometrics.Functions.pW_TDewPoi(T=T);end TDewPoi_pW;
Block that converts humidity concentration from [kg/kg total air] to [kg/kg dry air].
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
output RealOutput | XiDry | Water vapor concentration in [kg/kg dry air] |
input RealInput | XiTotalAir | Water vapor concentration in [kg/kg total air] |
block ToDryAir "Block to convert absolute humidity from [kg/kg total air] to [kg/kg dry air]" extends Modelica.Blocks.Interfaces.BlockIcon;Modelica.Blocks.Interfaces.RealOutput XiDry "Water vapor concentration in [kg/kg dry air]"; Modelica.Blocks.Interfaces.RealInput XiTotalAir "Water vapor concentration in [kg/kg total air]"; equation XiDry = XiTotalAir / (1-XiTotalAir);end ToDryAir;
Block that converts humidity concentration from [kg/kg dry air] to [kg/kg total air].
This block may be used, for example, to convert absolute humidity that is received from EnergyPlus to [kg/kg total air], which is the convention used by Modelica.Media.
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
output RealOutput | XiTotalAir | Water vapor concentration in [kg/kg total air] |
input RealInput | XiDry | Water vapor concentration in [kg/kg dry air] |
output RealOutput | XNonVapor | Mass fraction of remaining substances |
block ToTotalAir "Block to convert absolute humidity from [kg/kg dry air] to [kg/kg total air]" extends Modelica.Blocks.Interfaces.BlockIcon;Modelica.Blocks.Interfaces.RealOutput XiTotalAir "Water vapor concentration in [kg/kg total air]"; Modelica.Blocks.Interfaces.RealInput XiDry "Water vapor concentration in [kg/kg dry air]"; Modelica.Blocks.Interfaces.RealOutput XNonVapor "Mass fraction of remaining substances"; equation XiTotalAir = XiDry / (1+XiDry); XNonVapor = 1 - XiTotalAir;end ToTotalAir;
Given a moist are medium model, this component computes the states of the medium at its wet bulb temperature.
For a use of this model, see for example Buildings.Fluid.Sensors.WetBulbTemperature
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
input RealInput | TDryBul | Dry bulb temperature [K] |
input RealInput | p | Pressure [Pa] |
output RealOutput | TWetBul | Wet bulb temperature [K] |
input RealInput | Xi[Medium.nXi] | Species concentration at dry bulb temperature |
block TWetBul_TDryBulXi "Model to compute the wet bulb temperature" extends Modelica.Blocks.Interfaces.BlockIcon; replaceable package Medium = Modelica.Media.Interfaces.PartialCondensingGases "Medium model";Modelica.Blocks.Interfaces.RealInput TDryBul( start=303, final quantity="Temperature", final unit="K", min=0) "Dry bulb temperature"; Modelica.Blocks.Interfaces.RealInput p( final quantity="Pressure", final unit="Pa", min = 0) "Pressure"; Modelica.Blocks.Interfaces.RealOutput TWetBul( start=293, final quantity="Temperature", final unit="K", min=0) "Wet bulb temperature"; Modelica.Blocks.Interfaces.RealInput Xi[Medium.nXi] "Species concentration at dry bulb temperature"; protected Medium.BaseProperties dryBul "Medium state at dry bulb temperature"; Medium.BaseProperties wetBul(Xi(nominal=0.01*ones(Medium.nXi))) "Medium state at wet bulb temperature"; parameter Real s[Medium.nX](fixed=false) "Vector with zero everywhere except where water is"; initial algorithm for i in 1:Medium.nX loop if Modelica.Utilities.Strings.isEqual(string1=Medium.substanceNames[i], string2="Water", caseSensitive=false) then s[i] :=1; else s[i] :=0; end if; end for; assert(abs(1-sum(s)) < 1E-5, "Did not find medium species 'water' in the medium model. Change medium model."); equation dryBul.p = p; dryBul.T = TDryBul; dryBul.Xi = Xi; wetBul.phi = 1; wetBul.p = dryBul.p; wetBul.h = dryBul.h + s * (wetBul.X - dryBul.X) * Medium.enthalpyOfLiquid(dryBul.T); TWetBul = wetBul.T;end TWetBul_TDryBulXi;
Block to compute the water vapor pressure for a given dew point temperature.
The correlation used in this model is valid for dew point temperatures between
0 degC
and 200 degC
. It is the correlation from 2005
ASHRAE Handbook, p. 6.2. In an earlier version of this model, the equation from
Peppers has been used, but this equation yielded about 15 Kelvin lower dew point
temperatures.
Extends from Modelica.Blocks.Interfaces.BlockIcon (Basic graphical layout of input/output block).
Type | Name | Description |
---|---|---|
output RealOutput | p_w | Water vapor partial pressure |
input RealInput | T | Dew point temperature [K] |
block pW_TDewPoi "Model to compute the water vapor pressure for a given dew point temperature of moist air" extends Modelica.Blocks.Interfaces.BlockIcon;Modelica.Blocks.Interfaces.RealOutput p_w "Water vapor partial pressure"; Modelica.Blocks.Interfaces.RealInput T(final quantity="Temperature", final unit="K", min = 0, displayUnit="degC") "Dew point temperature"; equation p_w = Buildings.Utilities.Psychrometrics.Functions.pW_TDewPoi_amb(T=T);end pW_TDewPoi;