Buildings.Utilities.Math.Functions.Examples

Collection of models that illustrate model use and test models

Information

This package contains examples for the use of models that can be found in Buildings.Utilities.Math.Functions.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

NameDescription
Buildings.Utilities.Math.Functions.Examples.InverseXRegularized InverseXRegularized Test problem for function that replaces 1/x around the origin by a twice continuously differentiable function
Buildings.Utilities.Math.Functions.Examples.PolynomialDerivativeCheck PolynomialDerivativeCheck  
Buildings.Utilities.Math.Functions.Examples.PowerLinearized PowerLinearized Test problem for function that linearizes y=x^n below some threshold
Buildings.Utilities.Math.Functions.Examples.RegNonZeroPower RegNonZeroPower  
Buildings.Utilities.Math.Functions.Examples.RegNonZeroPowerDerivative_2_Check RegNonZeroPowerDerivative_2_Check  
Buildings.Utilities.Math.Functions.Examples.RegNonZeroPowerDerivativeCheck RegNonZeroPowerDerivativeCheck  
Buildings.Utilities.Math.Functions.Examples.SmoothExponentialDerivativeCheck SmoothExponentialDerivativeCheck  
Buildings.Utilities.Math.Functions.Examples.SpliceFunction SpliceFunction  
Buildings.Utilities.Math.Functions.Examples.SpliceFunctionDerivativeCheck SpliceFunctionDerivativeCheck  
Buildings.Utilities.Math.Functions.Examples.CubicHermite CubicHermite Test problem for cubic hermite splines


Buildings.Utilities.Math.Functions.Examples.InverseXRegularized Buildings.Utilities.Math.Functions.Examples.InverseXRegularized

Test problem for function that replaces 1/x around the origin by a twice continuously differentiable function

Information

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Realdelta0.5Small value for approximation

Modelica definition

model InverseXRegularized 
  "Test problem for function that replaces 1/x around the origin by a twice continuously differentiable function"
  extends Modelica.Icons.Example;
  Real x "Indepedent variable";
  parameter Real delta = 0.5 "Small value for approximation";
  Real y "Function value";
  Real xInv "Function value";
equation 
  x=2*time-1;
  xInv = if ( abs(x) > 0.1)   then 1 / x else 0;
  y = Buildings.Utilities.Math.Functions.inverseXRegularized(x=x, delta=delta);
end InverseXRegularized;

Buildings.Utilities.Math.Functions.Examples.PolynomialDerivativeCheck Buildings.Utilities.Math.Functions.Examples.PolynomialDerivativeCheck

Information

This example checks whether the function derivative is implemented correctly. If the derivative implementation is incorrect, the model will stop with an assert statement.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model PolynomialDerivativeCheck
  extends Modelica.Icons.Example;
  Real x;
  Real y;
initial equation 
   y=x;
equation 
  x=Buildings.Utilities.Math.Functions.polynomial(x=time-2, a={2, 4, -4, 5});
  der(y)=der(x);
  // Trigger an error if the derivative implementation is incorrect.
  assert(abs(x-y) < 1E-2, "Model has an error.");

end PolynomialDerivativeCheck;

Buildings.Utilities.Math.Functions.Examples.PowerLinearized Buildings.Utilities.Math.Functions.Examples.PowerLinearized

Test problem for function that linearizes y=x^n below some threshold

Information

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model PowerLinearized 
  "Test problem for function that linearizes y=x^n below some threshold"
  extends Modelica.Icons.Example;
  Real T4(start=300^4) "Temperature raised to 4-th power";
  Real T "Temperature";
  Real TExact "Temperature";
equation 
  T = (1+500*time);
  T = Buildings.Utilities.Math.Functions.powerLinearized(x=T4, x0=243.15^4, n=0.25);
  TExact = abs(T4)^(1/4);

end PowerLinearized;

Buildings.Utilities.Math.Functions.Examples.RegNonZeroPower Buildings.Utilities.Math.Functions.Examples.RegNonZeroPower

Information

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model RegNonZeroPower
  extends Modelica.Icons.Example;
  Real y "Function value";
equation 
  y=Buildings.Utilities.Math.Functions.regNonZeroPower(
                                             time, 0.3, 0.5);
end RegNonZeroPower;

Buildings.Utilities.Math.Functions.Examples.RegNonZeroPowerDerivative_2_Check Buildings.Utilities.Math.Functions.Examples.RegNonZeroPowerDerivative_2_Check

Information

This example checks whether the function derivative is implemented correctly. If the derivative implementation is not correct, the model will stop with an assert statement.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Realn0.33Exponent
Realdelta0.1Abscissa value where transition occurs

Modelica definition

model RegNonZeroPowerDerivative_2_Check
  extends Modelica.Icons.Example;

 parameter Real n=0.33 "Exponent";
 parameter Real delta = 0.1 "Abscissa value where transition occurs";

  Real x;
  Real y;
initial equation 
   y=x;
equation 
  x=Buildings.Utilities.Math.Functions.BaseClasses.der_regNonZeroPower(
                                                             time,n, delta, time);
  der(y)=der(x);
  assert(abs(x-y) < 1E-2, "Model has an error");

end RegNonZeroPowerDerivative_2_Check;

Buildings.Utilities.Math.Functions.Examples.RegNonZeroPowerDerivativeCheck Buildings.Utilities.Math.Functions.Examples.RegNonZeroPowerDerivativeCheck

Information

This example checks whether the function derivative is implemented correctly. If the derivative implementation is not correct, the model will stop with an assert statement.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Realn0.33Exponent
Realdelta0.1Abscissa value where transition occurs

Modelica definition

model RegNonZeroPowerDerivativeCheck
  extends Modelica.Icons.Example;
 parameter Real n=0.33 "Exponent";
 parameter Real delta = 0.1 "Abscissa value where transition occurs";

  Real x;
  Real y;
initial equation 
   y=x;
equation 
  x=Buildings.Utilities.Math.Functions.regNonZeroPower(
                                             time,n, delta);
  der(y)=der(x);
  assert(abs(x-y) < 1E-2, "Model has an error");

end RegNonZeroPowerDerivativeCheck;

Buildings.Utilities.Math.Functions.Examples.SmoothExponentialDerivativeCheck Buildings.Utilities.Math.Functions.Examples.SmoothExponentialDerivativeCheck

Information

This example checks whether the function derivative is implemented correctly. If the derivative implementation is not correct, the model will stop with an assert statement.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model SmoothExponentialDerivativeCheck
  extends Modelica.Icons.Example;

  Real x;
  Real y;
  Real ex "exact function value";
initial equation 
   y=x;
equation 
  x=Buildings.Utilities.Math.Functions.smoothExponential(
                                               x=time-2, delta=0.5);
  der(y)=der(x);
  assert(abs(x-y) < 1E-2, "Model has an error");
  ex=exp(-abs(time-2));
end SmoothExponentialDerivativeCheck;

Buildings.Utilities.Math.Functions.Examples.SpliceFunction Buildings.Utilities.Math.Functions.Examples.SpliceFunction

Information

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model SpliceFunction
  extends Modelica.Icons.Example;

  Real y "Function value";
equation 
  y=Buildings.Utilities.Math.Functions.spliceFunction(
                                            pos=10, neg=-10, x=time-0.4, deltax=0.2);
end SpliceFunction;

Buildings.Utilities.Math.Functions.Examples.SpliceFunctionDerivativeCheck Buildings.Utilities.Math.Functions.Examples.SpliceFunctionDerivativeCheck

Information

This example checks whether the function derivative is implemented correctly. If the derivative implementation is not correct, the model will stop with an assert statement.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model SpliceFunctionDerivativeCheck
  extends Modelica.Icons.Example;

  Real x;
  Real y;
initial equation 
   y=x;
equation 
  x=Buildings.Utilities.Math.Functions.spliceFunction(
                                            10, -10, time+0.1, 0.2);
  der(y)=der(x);
  assert(abs(x-y) < 1E-2, "Model has an error");

end SpliceFunctionDerivativeCheck;

Buildings.Utilities.Math.Functions.Examples.CubicHermite Buildings.Utilities.Math.Functions.Examples.CubicHermite

Test problem for cubic hermite splines

Information

This example demonstrates the use of the function for cubic hermite interpolation and linear extrapolation. The example use interpolation with two different settings: One settings produces a monotone cubic hermite, whereas the other setting does not enforce monotonicity. The resulting plot should look as shown below, where for better visibility, the support points have been marked with black dots. Notice that the red curve is monotone increasing.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

TypeNameDefaultDescription
Realxd[:]{-1,1,5,6}Support points
Realyd[size(xd, 1)]{-1,1,2,10}Support points
Reald[size(xd, 1)] Derivatives at the support points
RealdMonotone[size(xd, 1)] Derivatives at the support points
BooleanensureMonotonicitytrue 

Modelica definition

model CubicHermite "Test problem for cubic hermite splines"
  extends Modelica.Icons.Example;
  parameter Real[:] xd={-1,1,5,6} "Support points";
  parameter Real[size(xd, 1)] yd={-1,1,2,10} "Support points";
  parameter Real[size(xd, 1)] d(fixed=false) 
    "Derivatives at the support points";
  parameter Real[size(xd, 1)] dMonotone(fixed=false) 
    "Derivatives at the support points";
  parameter Boolean ensureMonotonicity=true;
  Real x "Independent variable";
  Real y "Dependent variable without monotone interpolation";
  Real yMonotone "Dependent variable with monotone interpolation";
  Integer i "Integer to select data interval";
initial algorithm 
  // Get the derivative values at the support points
  d := Buildings.Utilities.Math.Functions.splineDerivatives(
    x=xd,
    y=yd,
    ensureMonotonicity=false);
  dMonotone := Buildings.Utilities.Math.Functions.splineDerivatives(x=xd, y=yd);
algorithm 
  x := xd[1] + time*1.2*(xd[size(xd, 1)] - xd[1]) - 0.5;
  // i is a counter that is used to pick the derivative of d or dMonotonic
  // that correspond to the interval that contains x
  i := 1;
  for j in 1:size(xd, 1) - 1 loop
    if x > xd[j] then
      i := j;
    end if;
  end for;
  // Extrapolate or interpolate the data
  y := Buildings.Utilities.Math.Functions.cubicHermiteLinearExtrapolation(
    x=x,
    x1=xd[i],
    x2=xd[i + 1],
    y1=yd[i],
    y2=yd[i + 1],
    y1d=d[i],
    y2d=d[i + 1]);
  yMonotone :=
    Buildings.Utilities.Math.Functions.cubicHermiteLinearExtrapolation(
    x=x,
    x1=xd[i],
    x2=xd[i + 1],
    y1=yd[i],
    y2=yd[i + 1],
    y1d=dMonotone[i],
    y2d=dMonotone[i + 1]);
end CubicHermite;

Automatically generated Thu Dec 8 16:36:32 2011.