Solve f(x, data) for x with given f
Information
Extends from Buildings.Utilities.Math.BaseClasses.OneNonLinearEquation (Determine solution of a non-linear algebraic equation in one unknown without derivatives in a reliable and efficient way).
Package Content
Information
Extends from (Nonlinear algebraic equation in one unknown: y = f_nonlinear(x,p,X)).
Inputs
| Type | Name | Default | Description |
| Real | x | | Independent variable of function |
| Real | f_nonlinear_data[:] | | Additional data for the function |
Outputs
| Type | Name | Description |
| Real | y | = f_nonlinear(x) |
Modelica definition
redeclare function extends f_nonlinear
algorithm
y := epsilon_ntuZ(x, f_nonlinear_data[1],
Buildings.Fluid.Types.HeatExchangerFlowRegime.CrossFlowUnmixed);
end f_nonlinear;
Information
Extends from (Solve f_nonlinear(x_zero)=y_zero; f_nonlinear(x_min) - y_zero and f_nonlinear(x_max)-y_zero must have different sign).
Inputs
| Type | Name | Default | Description |
| Real | y_zero | | Determine x_zero, such that f_nonlinear(x_zero) = y_zero |
| Real | x_min | | Minimum value of x |
| Real | x_max | | Maximum value of x |
| Real | f_nonlinear_data[:] | | Additional data for function f_nonlinear |
| Real | x_tol | 100*Modelica.Constants.eps | Relative tolerance of the result |
Outputs
| Type | Name | Description |
| Real | x_zero | f_nonlinear(x_zero) = y_zero |
Modelica definition
redeclare function extends solve
end solve;
HTML-documentation generated by Dymola Mon Jun 14 14:28:20 2010.