| Name | Description | 
|---|---|
|  FixedResistanceDpM | Fixed flow resistance with dp and m_flow as parameter | 
|  LosslessPipe | Pipe with no flow friction and no heat transfer | 
|  SplitterFixedResistanceDpM | Flow splitter with fixed resistance at each port | 
|  Examples | Collection of models that illustrate model use and test models | 
 Buildings.Fluid.FixedResistances.FixedResistanceDpM
Buildings.Fluid.FixedResistances.FixedResistanceDpM
 
This is a model of a resistance with a fixed flow coefficient k = m_flow/sqrt(dP).
Near the origin, the square root relation is regularized to ensure that the derivative is bounded.
Extends from Buildings.Fluid.BaseClasses.PartialResistance (Partial model for a hydraulic resistance).
| Type | Name | Default | Description | 
|---|---|---|---|
| replaceable package Medium | PartialMedium | Medium in the component | |
| Boolean | use_dh | false | Set to true to specify hydraulic diameter | 
| Length | dh | 1 | Hydraulic diameter [m] | 
| Real | ReC | 4000 | Reynolds number where transition to turbulent starts | 
| Real | deltaM | 0.3 | Fraction of nominal mass flow rate where transition to turbulent occurs | 
| Nominal condition | |||
| MassFlowRate | m_flow_nominal | Nominal mass flow rate [kg/s] | |
| Pressure | dp_nominal | Pressure [Pa] | |
| Assumptions | |||
| Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) | 
| Advanced | |||
| AbsolutePressure | dp_start | 0.01*system.p_start | Guess value of dp = port_a.p - port_b.p [Pa] | 
| MassFlowRate | m_flow_start | system.m_flow_start | Guess value of m_flow = port_a.m_flow [kg/s] | 
| MassFlowRate | m_flow_small | 1E-4*m_flow_nominal | Small mass flow rate for regularization of zero flow [kg/s] | 
| Boolean | from_dp | true | = true, use m_flow = f(dp) else dp = f(m_flow) | 
| Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate | 
| Diagnostics | |||
| Boolean | show_T | true | = true, if temperatures at port_a and port_b are computed | 
| Boolean | show_V_flow | true | = true, if volume flow rate at inflowing port is computed | 
| Type | Name | Description | 
|---|---|---|
| FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) | 
| FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) | 
model FixedResistanceDpM "Fixed flow resistance with dp and m_flow as parameter" extends Buildings.Fluid.BaseClasses.PartialResistance;parameter Boolean use_dh = false "Set to true to specify hydraulic diameter"; parameter Modelica.SIunits.Length dh=1 "Hydraulic diameter"; parameter Real ReC=4000 "Reynolds number where transition to turbulent starts"; parameter Real deltaM(min=0.01) = 0.3 "Fraction of nominal mass flow rate where transition to turbulent occurs"; initial equation if ( m_flow_turbulent > m_flow_nominal) then Modelica.Utilities.Streams.print("Warning: In FixedResistanceDpM, m_flow_nominal is smaller than m_flow_turbulent." + "\n" + " m_flow_nominal = " + realString(m_flow_nominal) + "\n" + " dh = " + realString(dh) + "\n" + " To fix, set dh < " + realString( 4*m_flow_nominal/eta_nominal/Modelica.Constants.pi/ReC) + "\n" + " Suggested value: dh = " + realString(1/10*4*m_flow_nominal/eta_nominal/Modelica.Constants.pi/ReC)); end if; equation m_flow_turbulent = if use_dh then eta_nominal*dh/4*Modelica.Constants.pi*ReC else deltaM * m_flow_nominal; if linearized then k = m_flow_nominal / dp_nominal / conv2; else k = m_flow_nominal / sqrt(dp_nominal); end if; end FixedResistanceDpM; 
 Buildings.Fluid.FixedResistances.LosslessPipe
Buildings.Fluid.FixedResistances.LosslessPipe
 
Model of a pipe with no flow resistance and no heat loss. This model can be used to replace a replaceable pipe model in flow legs in which no friction should be modeled, such as in the outlet port of a three way valve.
Extends from Modelica.Fluid.Interfaces.PartialTwoPortTransport (Partial element transporting fluid between two ports without storage of mass or energy), Buildings.BaseClasses.BaseIcon (Base icon).
| Type | Name | Default | Description | 
|---|---|---|---|
| replaceable package Medium | PartialMedium | Medium in the component | |
| Assumptions | |||
| Boolean | allowFlowReversal | system.allowFlowReversal | = true to allow flow reversal, false restricts to design direction (port_a -> port_b) | 
| Advanced | |||
| AbsolutePressure | dp_start | 0.01*system.p_start | Guess value of dp = port_a.p - port_b.p [Pa] | 
| MassFlowRate | m_flow_start | system.m_flow_start | Guess value of m_flow = port_a.m_flow [kg/s] | 
| MassFlowRate | m_flow_small | system.m_flow_small | Small mass flow rate for regularization of zero flow [kg/s] | 
| Diagnostics | |||
| Boolean | show_T | true | = true, if temperatures at port_a and port_b are computed | 
| Boolean | show_V_flow | true | = true, if volume flow rate at inflowing port is computed | 
| Type | Name | Description | 
|---|---|---|
| FluidPort_a | port_a | Fluid connector a (positive design flow direction is from port_a to port_b) | 
| FluidPort_b | port_b | Fluid connector b (positive design flow direction is from port_a to port_b) | 
model LosslessPipe "Pipe with no flow friction and no heat transfer" extends Modelica.Fluid.Interfaces.PartialTwoPortTransport; extends Buildings.BaseClasses.BaseIcon;equation dp=0; // Isenthalpic state transformation (no storage and no loss of energy) port_a.h_outflow = inStream(port_b.h_outflow); port_b.h_outflow = inStream(port_a.h_outflow); end LosslessPipe; 
 Buildings.Fluid.FixedResistances.SplitterFixedResistanceDpM
Buildings.Fluid.FixedResistances.SplitterFixedResistanceDpM
 
Model of a flow splitter (or mixer) with a fixed resistance in each flow leg.
Extends from Buildings.Fluid.BaseClasses.PartialThreeWayResistance (Flow splitter with partial resistance model at each port).
| Type | Name | Default | Description | 
|---|---|---|---|
| replaceable package Medium | PartialMedium | Fluid medium model | |
| Boolean | use_dh | false | Set to true to specify hydraulic diameter | 
| Real | deltaM | 0.3 | Fraction of nominal mass flow rate where transition to turbulent occurs | 
| Length | dh[3] | {1,1,1} | Hydraulic diameter [m] | 
| Real | ReC[3] | {4000,4000,4000} | Reynolds number where transition to turbulent starts | 
| Nominal condition | |||
| MassFlowRate | m_flow_nominal[3] | Mass flow rate [kg/s] | |
| Pressure | dp_nominal[3] | Pressure [Pa] | |
| Advanced | |||
| Boolean | from_dp | true | = true, use m_flow = f(dp) else dp = f(m_flow) | 
| Boolean | linearized | false | = true, use linear relation between m_flow and dp for any flow rate | 
| Assumptions | |||
| Dynamics | |||
| Boolean | dynamicBalance | true | Set to true to use a dynamic balance, which often leads to smaller systems of equations | 
| Time | tau | 10 | Time constant at nominal flow for dynamic energy and momentum balance [s] | 
| MassFlowRate | mDyn_flow_nominal | sum(m_flow_nominal[:]/3) | Nominal mass flow rate for dynamic momentum and energy balance [kg/s] | 
| Dynamics | energyDynamics | system.energyDynamics | Formulation of energy balance | 
| Dynamics | massDynamics | system.massDynamics | Formulation of mass balance | 
| Initialization | |||
| AbsolutePressure | p_start | system.p_start | Start value of pressure [Pa] | 
| Boolean | use_T_start | true | = true, use T_start, otherwise h_start | 
| Temperature | T_start | if use_T_start then system.T... | Start value of temperature [K] | 
| SpecificEnthalpy | h_start | if use_T_start then Medium.s... | Start value of specific enthalpy [J/kg] | 
| MassFraction | X_start[Medium.nX] | Medium.X_default | Start value of mass fractions m_i/m [kg/kg] | 
| ExtraProperty | C_start[Medium.nC] | fill(0, Medium.nC) | Start value of trace substances | 
| Type | Name | Description | 
|---|---|---|
| FluidPort_a | port_1 | |
| FluidPort_b | port_2 | |
| FluidPort_a | port_3 | 
model SplitterFixedResistanceDpM 
  "Flow splitter with fixed resistance at each port"
    extends Buildings.Fluid.BaseClasses.PartialThreeWayResistance(
    mDyn_flow_nominal = sum(m_flow_nominal[:]/3),
      redeclare Buildings.Fluid.FixedResistances.FixedResistanceDpM res1(
         redeclare package Medium=Medium,
         from_dp=from_dp, m_flow_nominal=m_flow_nominal[1], dp_nominal=dp_nominal[1],
         ReC=ReC[1], dh=dh[1],
         linearized=linearized, deltaM=deltaM),
      redeclare Buildings.Fluid.FixedResistances.FixedResistanceDpM res2(
         redeclare package Medium=Medium,
         from_dp=from_dp, m_flow_nominal=m_flow_nominal[2], dp_nominal=dp_nominal[2],
         ReC=ReC[2], dh=dh[2],
         linearized=linearized, deltaM=deltaM),
      redeclare Buildings.Fluid.FixedResistances.FixedResistanceDpM res3(
         redeclare package Medium=Medium,
         from_dp=from_dp, m_flow_nominal=m_flow_nominal[3], dp_nominal=dp_nominal[3],
         ReC=ReC[3], dh=dh[3],
         linearized=linearized, deltaM=deltaM));
  parameter Boolean use_dh = false "Set to true to specify hydraulic diameter";
  parameter Modelica.SIunits.MassFlowRate[3] m_flow_nominal(each min=0) 
    "Mass flow rate";
  parameter Modelica.SIunits.Pressure[3] dp_nominal(each min=0) "Pressure";
  parameter Real deltaM(min=0) = 0.3 
    "Fraction of nominal mass flow rate where transition to turbulent occurs";
  parameter Modelica.SIunits.Length[3] dh={1, 1, 1} "Hydraulic diameter";
  parameter Real[3] ReC={4000, 4000, 4000} 
    "Reynolds number where transition to turbulent starts";
  parameter Boolean linearized = false 
    "= true, use linear relation between m_flow and dp for any flow rate";
end SplitterFixedResistanceDpM;